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INTRODUCTION

The study of the geodesic flow in closed negatively curved manifolds is a beautiful
mix of topology, Riemannian geometry, geometric group theory and ergodic theory.
We know in this situation that closed geodesics are in one-to-one correspondence with
conjugacy classes of elements of the fundamental group, or equivalently, with the set
of homotopy classes of maps of circles in the manifold. Even though closed geodesics
are infinite in number, we have a good grasp — thanks to the notion of topological
entropy — of how the number of these geodesics grows with respect to the length.
We also have a computation of this topological entropy in hyperbolic spaces by B����
(����) and M������� (����) and rigidity results for this entropy by B�����, C�������,
and G����� (����) and H��������� (����).

While the statements of this first series of results seem to deal only with closed
geodesics, the foliation of the unit tangent bundle by orbits of the geodesic flow plays
a fundamental role. The study of invariant measures by the geodesic flow is a crucial
tool, and the equidistribution of closed geodesics by B���� (����) and M�������
(����) for hyperbolic manifolds a central result. We refer to section � for more precise
definitions, results and references.

For many reasons — as we discuss in section � — closed totally geodesic subman-
ifolds of dimension at least 2 are quite rare. However, in constant curvature, the
foliation of the Grassmannian of :-planes coming from totally geodesic planes is
a natural generalization of the geodesic flow and several crucial results of R�����
(����a,b) and S��� (����) as well as M�M�����, M��������, and O� (����) describe
closed invariant sets and invariant measures. This foliation stops to make sense in
variable curvature, at least far away from the constant curvature situation, although
for metrics close to hyperbolic ones, a result by G����� (����a) — see also L���, ����
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— shows that the foliation of the Grassmann bundle persists when one replaces totally
geodesic submanifolds by minimal ones.

If we move in the topological direction, going from circles to surfaces, Kahn–
Marković Surface Subgroup Theorem (K��� and M�������, ����b) provides the
existence of many surface subgroups in the fundamental group of a hyperbolizable 3-
manifold ". A subsequent result of K��� and M������� (����a) gives an asymptotic
of the number of these surface groups with respect to the genus — see Theorem �.�.

However this asymptotic counting does not involve the underlying Riemannian
geometry as opposed to the topological entropy that we discussed in the first paragraph.
The next step is to use fundamental results of S����� and Y�� (����) and S���� and
U�������� (����), which tells us that every such surface group can be realized by a
minimal surface — although non necessarily uniquely.

In C�������, M������, and N���� (����), the authors propose a novel idea: count
asymptotically with respect to the area these minimal surfaces, but when the boundary
at infinity of those minimal surfaces becomes more and more circular, or more precisely
are  -quasicircles, with  approaching 1. The precise definition of this counting
requires the description of quasi-Fuchsian groups and their boundary at infinity, done
in section �, and their main result (Theorem �.�) is presented in section �. These
results define an entropy-like constant ⇢(" , ⌘) for minimal surfaces in a Riemannian
manifold (" , ⌘) of curvature less than �1. The main result of C�������, M������, and
N���� (����) is to compute it for hyperbolic manifolds, gives bounds in the general
case and most notably proves a rigidity result: ⇢(" , ⌘) = 2 if and only if ⌘ is hyperbolic.
Altogether, these results mirror those for closed geodesics.

When one moves to studying solution of elliptic partial differential equations, for
instance minimal surfaces or pseudo-holomophic curves, the situation is different
from the chaotic behavior of the geodesic flow. While there is a huge literature about
moduli spaces of solutions when one imposes constraints such as homology classes,
we do not have that many results describing a moduli space of all solutions: possibly
immersed with dense images, in other words to continue the process for minimal
surfaces described in the introduction of G����� (����a) for geodesics: if one wishes
to understand closed geodesics not as individuals but as members of a community one has
to look at all (not only closed) geodesics in X which form an 1-dimensional foliation of the
projectivized tangent bundle.

The presentation of these notes shifts around the ideas used in C�������, M������,
and N���� (����) and follows more directly the philosophy introduced in G�����
(����a). We focus on the construction of such a moduli space — that we call the phase
space of stable minimal surfaces — and its topological properties — see section �.� and
Theorem �.�. These properties are a rephrasing of Theorem �.�� about quasi-isometric
properties of stable minimal surfaces, relying on results of S���� (����) and a “Morse
type Lemma” argument by C�������, M������, and N���� (����, Theorem �.�). This
space is the analogue, in our situation, of the geodesic flow and theR-action is replaced
by an SL2(R)-action.
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Then we move to studying SL2(R)-invariant measures on this phase space and
show they are related to what we call laminar currents which are the analogues in
our situation of geodesic currents — see B������ (����). The main result is now an
equidistribution result in this situation: Theorem �.�. This theorem follows from the
techniques of the proof of Surface Subgroup Theorem using the presentation given in
K���, L�������, and M���� (����).

This Equidistribution Theorem and the construction of the phase space allows, by
comparing the countings with respect to the area and to the genus — as in K��� and
M�������, ����a — to proceed quickly to the proof of the results of C�������, M������,
and N���� (����) when, for the rigidity result, we assume that ⌘ is close enough to a
hyperbolic metric.

The whole article of C�������, M������, and N���� (����) mixes beautiful ideas
from many subjects, adding to the mix of topology, Riemannian geometry, geometric
group theory and ergodic theory used in the study of the geodesic flow, a pinch of
geometric analysis. The approach given in these notes is not just to present the proof
but also to take the opportunity to tour some of the fundamental results in these
various mathematics. 1 We take some leisurely approach and explain some of the
main results and take the time to give a few simple proofs and elementary discussions:
the clever proof of Thurston showing that there are only finitely many surface groups
of a given genus in the fundamental group of a hyperbolic manifold, the discussion of
stable minimal surfaces, the geometric analysis trick that derives from a rigidity result
(here the characterization of the plane as the unique stable minimal surface in R3)
some compactness results (Proposition �.�).

During the preparation of these notes, I benefited from the help of many colleagues,
as well as the insight of the authors. I want to thank them here for their crucial input:
Dick Canary, Thomas Delzant, Olivier Guichard, Fanny Kassel, Shahar Mozes, Hee Oh,
Pierre Pansu, Andrea Seppi, Jérémy Toulisse and Mike Wolf.

�. COUNTING GEODESICS AND EQUIDISTRIBUTION

When (" , ⌘) is a negatively curved manifold, there is a one-to-one correspondence
between conjugacy classes of elements of �1(") and closed geodesics. Even though
there are infinitely many closed geodesics, we can count them “asymptotically”. Equiv-
alently, this will give an asymptotic count of the conjugacy classes of elements of�1("),
or to start a point of view that we shall pursue later, the set of free homotopy classes
of maps of (1 in ".

We review here some important results that will be useful in our discussion and
serve as a motivation.

�. The introduction of C�������, M������, and N���� (����) also addresses minimal hypersurfaces in
higher dimension that we do not discuss here
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�.�. Entropy and asymptotic counting of geodesics
Let (" , ⌘) be a closed manifold of negative curvature. Fixing a positive constant ),

there are only finitely many closed geodesics of length less than ). Let us define

�⌘()) :=
�
geodesic ✏ ; length(✏) 6 )

 
.

The following limit, when it is defined, is called the topological entropy of ":

htop(" , ⌘) := lim
C!1

1
)

log
�
;�⌘())

�
.

We will see it is always defined in negative curvature. It measures the exponential
growth of the number of geodesics with respect to the length.

The topological entropy is related to the volume entropy of " defined by

hvol(" , ⌘) = lim inf
C!1

1
'

log
�
Vol(⌫(G , '))� ,

where ⌫(G , ') is the ball of radius ' in the universal cover e" of ", G any point in e" .
The volume entropy does not depend on the choice of the point G and we have

Theorem �.�. — Let (" , ⌘) be a closed negatively curved manifold.
�) The topological htop(" , ⌘) is well-defined. When ⌘0 is hyperbolic, 2

htop(" , ⌘0) = dim(") � 1.

�) We have

htop(" , ⌘) = hvol(" , ⌘) = lim
'!1

log
�
;{✏ 2 �1(") ; 3"(✏ · G , G) 6 '}�

'

·

The first item is a celebrated result by B���� (����) and M������� (����). The
second item is due to M������ (����).

�.�.�. Rigidity of the entropy. — We have several rigidity theorems for the entropy.
First, if a metric on closed manifold has curvature less than �1, then

hvol(" , ⌘) > dim(") � 1,
with equality if and only if ⌘ is hyperbolic. For deeper results in the presence of upper
bounds on the curvature, see P���� (����) and H��������� (����). As a special case
of B�����, C�������, and G����� (����), we have, when we drop the condition on the
curvature

Theorem �.�. — Let (" , ⌘0) be a hyperbolic manifold of dimension < and ⌘ another metric
on ", then

hvol(" , ⌘)< · Vol(" , ⌘) > hvol(" , ⌘0)< · Vol(" , ⌘0).
The equality implies that ⌘ has constant curvature.

In this exposé, we will only use the case of < = 2, which is due to K���� (����).

�. That is when the curvature is constant and equal to �1
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�.�. Equidistribution

This asymptotic counting has a counterpart called equidistribution. Let us first recall
that geodesics are solutions of some second order differential equation, and we may
as well consider non closed geodesics in the Riemannian manifold ". Let us consider
the phase space G of this equation as the space of maps ✏ from R to ", where ✏ is an
arc length parametrized solution of the equation. The precomposition by translation
gives a right action by R, and thus G is partitioned into leaves which are orbits of the
right action of R. The space G canonically identifies with the unit tangent bundle U"
by the map ✏ 7! (✏(0), §✏(0)), and the above R-action corresponds to the action of
the geodesic flow.

We may thus associate to each closed orbit ✏ of length ✓ a unique probability
measure ⇣✏ on G = U" supported on ✏, R-invariant and so that for any function
on U" π

U"
5 d⇣✏ :=

1
✓

π
✓

0
5

�
✏(B)� dB .

When " is hyperbolic, another natural and R-invariant probability measure comes
from the left invariant ⇠Leb measure (under the group of isometries) in the universal
cover.

The next result is intimately related to Theorem �.� and also due to B���� (����)
and M������� (����).

Theorem �.�. — Assume (" , ⌘0) is hyperbolic, then

lim
)!1

1
;�⌘0())

’
✏2�⌘0 ())

⇣✏ = ⇠!41 .

�. TOTALLY GEODESIC SUBMANIFOLDS OF HIGHER DIMENSION

As a first attempt of generalization, it is quite tempting to understand what happens
to totally geodesic submanifolds of higher dimension, where by totally geodesic we
mean complete and such that any geodesic in the submanifold is a geodesic for the
ambient manifold.

�.�. Closed totally geodesic submanifolds are rare

One easily constructs by arithmetic means hyperbolic manifolds with infinitely
many closed totally geodesic submanifolds, however this situation is exceptional and
we have, as a special case of a beautiful recent theorem by M������� and M��������
(����) — generalized in B����, F�����, M�����, and S����� (����):

Theorem �.�. — If a closed hyperbolic 3-manifold " contains infinitely many closed totally
geodesic subspaces of dimension at least 2, then " is arithmetic.
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