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ABOUT PLANE PERIODIC WAVES
OF THE NONLINEAR SCHRÖDINGER EQUATIONS

by Corentin Audiard & L. Miguel Rodrigues

Abstract. — The present contribution contains a quite extensive theory for the
stability analysis of plane periodic waves of general Schrödinger equations. On the
one hand, we put the one-dimensional theory, or in other words the stability theory
for longitudinal perturbations, on par with the one available for systems of Korteweg
type, including results on coperiodic spectral instability, nonlinear coperiodic orbital
stability, sideband spectral instability and linearized large-time dynamics in relation
with modulation theory, and resolutions of all the involved assumptions in both the
small-amplitude and large-period regimes. On the other hand, we provide extensions
of the spectral part of the latter to the multidimensional context. Notably, we provide
suitable multidimensional modulation formal asymptotics, validate those at the spec-
tral level, and use them to prove that waves are always spectrally unstable in both the
small-amplitude and the large-period regimes.
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Résumé (À propos des ondes planes périodiques des équations de Schrödinger non
linéaires). — Le travail présenté ici comprend une théorie relativement complète
permettant l’analyse de la stabilité des ondes planes périodiques des équations de
Schrödinger générales. D’une part, nous mettons la théorie unidimensionnelle, ou au-
trement dit la théorie de stabilité sous perturbations longitudinales, au niveau de celle
disponible pour les systèmes de type Korteweg, en y incluant des résultats sur l’instabi-
lité spectrale co-périodique, la stabilité orbitale non linéaire co-périodique, l’instabilité
spectrale latérale et la dynamique linéarisée en temps long et ses relations avec la théo-
rie de la modulation, et en résolvant toutes les hypothèses associées dans les régimes
de petite amplitude et de grande période. D’autre part, nous étendons la partie spec-
trale de cette analyse au contexte multidimensionnel. En particulier, nous développons
une asymptotique formelle de modulation multidimensionnelle, validons celle-ci au ni-
veau spectral et l’utilisons pour démontrer que les ondes sont toujours spectralement
instables à la fois dans les régimes de petite amplitude et de grande période.

1. Introduction

We consider Schrödinger equations in the form
i ∂tf = −divx

(
κ(|f |2)∇xf

)
+ κ′(|f |2) ‖∇xf‖2 f + 2W ′(|f |2) f(1)

(or some anisotropic generalizations) with W a smooth real-valued function
and κ a smooth positive-valued function, bounded away from zero, where the
unknown f is complex valued, f(t,x) ∈ C, and (t,x) ∈ R×Rd. Note that the
sign assumption on κ may be replaced with the assumption that κ is real valued
and far from zero since one may change the sign of κ by replacing (f, κ,W )
with (f,−κ,−W ).

Since the nonlinearity is not holomorphic in f , it is convenient to adopt a
real point of view and introduce real and imaginary parts f = a+i b, U =

(
a
b

)
.

Multiplication by − i is, thus, encoded in

J =
(

0 1
−1 0

)
,(2)

and Equation (1) takes the form

∂tU = J
(
−divx

(
κ(‖U‖2)∇xU

)
+ κ′(‖U‖2) ‖∇xU‖2 U + 2W ′(‖U‖2) U

)
.

(3)

The problem has a Hamiltonian structure
∂tU = J δH0[U] with H0 [U] = 1

2κ(‖U‖2)‖∇xU‖2 ,+W (‖U‖2),

with δ denoting the variational gradient1. Indeed, our interest in (1) originates
in the fact that we regard the class of equations (1) as the most natural class of

1. See the notational section at the end of the present Introduction for a definition.
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isotropic quasi/linear dispersive Hamiltonian equations, including most classi-
cal semilinear Schrödinger equations. See [54] for a comprehensive introduction
to the latter. In Appendix C, we also show how to treat some anisotropic ver-
sions of the equations.

Note that in the above form, invariances are embedded with respect to ro-
tations, time translations and space translations; if f is a solution, so is f̃
when

f̃(t,x) = e− iφ0 f(t,x) , φ0 ∈ R , rotational invariance ,

f̃(t,x) = f(t− t0,x) , t0 ∈ R , time translation invariance ,

f̃(t,x) = f(t,x− x0) , x0 ∈ Rd , space translation invariance .
Actually, rotations and time and space translations leave the Hamiltonian H0
essentially unchanged, in a sense made explicit in Appendix A. Thus, through
a suitable version of Noether’s principle, they are associated with conservation
laws, respectively on mass M[U] = 1

2‖U‖2, Hamiltonian H0[U] and momentum
Q[U] = (Qj [U])j , with Qj [U] = 1

2JU · ∂jU, j = 1, . . . , d. Namely, invariance
by rotation implies that any solution U to (3) satisfies the mass conservation
law

∂tM(U) =
∑

j

∂j

(
JδM[U] · ∇Uxj

H0[U]
)
.(4)

Likewise, invariance by time translation implies that (3) contains the conser-
vation law

∂tH0[U] =
∑

j

∂j

(
∇Uxj

H0[U] · JδH0[U]
)
.(5)

Finally, invariance by spatial translation implies that from (3) stems

∂t (Q[U]) = ∇x

(
1
2JU · JδH0[U]−H0[U]

)
+
∑

`

∂`(Jδ Q[U] · ∇Ux`
H0[U]) .

(6)

The reader is referred to Appendix A for a derivation of the latter.
We are interested in the analysis of the dynamics of near-plane periodic uni-

formly traveling waves of (1). Let us first recall that a (uniformly traveling)
wave is a solution whose time evolution occurs through the action of symme-
tries. We say that the wave is a plane wave when in a suitable frame it is
constant in all but one direction, and that it is periodic if it is periodic up to
symmetries. Given the foregoing set of symmetries, after choosing for the sake
of concreteness, the direction of propagation as2 e1 and the normalizing period

2. Throughout the text, we denote as ej the jth vector of the canonical basis of Rd. In
particular, e1 = (1, 0, . . . , 0).
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to be 1 through the introduction of wavenumbers, we are interested in solutions
to (1) of the form

f(t,x) = e− i(kφ (x−c
x
t)+ω

φ
t) f(kx (x− cx t))

= e− i(kφ x+(ωφ−kφ cx) t) f(kx x+ ωx t) ,

with profile f 1-periodic, wavenumbers (kφ, kx) ∈ R2, kx > 0, time frequencies
(ωφ, ωx) ∈ R2, spatial speed cx ∈ R, where

x = (x,y) ωx = −kx cx .
In other terms, we consider solutions to (3) in the form

U(t,x) = e(kφ (x−c
x
t)+ω

φ
t)J U(kx (x− cx t)) ,(7)

with U 1-periodic (and nonconstant). More general periodic plane waves are
also considered in Appendix D. Beyond references to results involved in our
analysis given along the text and comparison to the literature provided near
each main statement, in order to place our contribution in a bigger picture, we
refer the reader to [37] for a general background on nonlinear wave dynamics
and to [46, 30, 14] for material more specific to Hamiltonian systems.

To set the frame for linearization, we observe that going to a frame adapted
to the background wave in (7) by

U(t,x) = e(kφ (x−cx t)+ωφ t)J V(t, kx (x− cx t),y) ,
changes (3) into

∂tV = JδH[V] ,
(8)

H[V] := H0(V, (kx∂x + kφJ)V,∇yV)−ωφM[V] + cxQ1(V, (kx∂x + kφJ)V)
= H0(V, (kx∂x + kφJ)V,∇yV)−

(
ωφ− kφ cx

)
M[V]−ωxQ1[V] ,

and that (t, x,y) 7→ U(x) is a stationary solution to (8). Direct linearization of
(8) near this solution provides the linear equation ∂tV = LV with L defined
by

LV = J Hess H[U ](V) ,(9)
where Hess denotes the variational Hessian, that is, Hess = Lδ with L denoting
linearization. Incidentally, we point out that the natural splitting

H0 = Hx
0 + Hy , Hy [U] = 1

2κ(‖U‖2)‖∇yU‖2 ,
may be followed all the way through frame change and linearization

H= Hx + Hy ,

L = J Hess Hx[U ] + J Hess Hy[U ] =: Lx + Ly ,

with Ly = −κ(‖U‖2)J ∆y.
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As made explicit in Section 3.1 at the spectral and linear level, to make
the most of the spatial structure of periodic plane waves, it is convenient to
introduce a suitable Bloch–Fourier integral transform. As a result, one may
analyze the action of L defined on L2(R) through3 the actions of Lξ,η defined
on L2((0, 1)) with periodic boundary conditions, where (ξ,η) ∈ [−π, π]×Rd−1,
ξ being a longitudinal Floquet exponent and η a transverse Fourier frequency.
The operator Lξ,η encodes the action of J Hess H[U ] on functions of the form

x = (x,y) 7→ ei ξx+i η·y W(x) , W(·+ 1) = W ,

through

J Hess H[U ]
(
(x,y) 7→ ei ξx+i η·y W(x)

)
(x) = ei ξx+i η·y (Lξ,ηW)(x) .

In particular, the spectrum of L coincides with the union over (ξ,η) of the
spectra of Lξ,η. In turn, as recalled in Section 3.3, generalizing the analysis
of Gardner [25], the spectrum of each Lξ,η may be conveniently analyzed with
the help of an Evans function Dξ( · ,η), an analytic function whose zeros agree
in location and algebraic multiplicity4 with the spectrum of Lξ,η. A large part
of our spectral analysis hinges on the derivation of an expansion of Dξ(λ,η)
when (λ, ξ,η) is small (Theorem 3.2).

As derived in Section 2, families of plane periodic profiles in a fixed direc-
tion – here taken to be e1 – form four-dimensional manifolds when identified up
to rotational and spatial translations, parametrized by (µx, cx, ωφ, µφ), where
(µx, µφ) are constants of integration of profile equations associated with conser-
vation laws (4) and (6) (or, more precisely, its first component since we consider
waves propagating along e1). The averages along wave profiles of quantities of
interest are expressed in terms of an action integral Θ(µx, cx, ωφ, µφ) and its
derivatives. This action integral plays a prominent role in our analysis. A sig-
nificant part of our analysis, indeed, aims at reducing properties of operators
acting on infinite-dimensional spaces to properties of this finite-dimensional
function.

After these preliminary observations, we here give a brief account of each of
our main results and provide only later in the text more specialized comments
around precise statements. Our main achievements are essentially twofold.
On the one hand, we provide counterparts to the main upshots of [12, 13, 9,
10, 11, 50] – derived for one-dimensional Hamiltonian equations of Korteweg
type – for one-dimensional Hamiltonian equations of Schrödinger type. On the
other hand, we extend parts of this analysis to the present multidimensional
framework.

3. As, by using Fourier transforms on constant-coefficient operators one reduces their
action on functions over the whole space to finite-dimensional operators parametrized by
Fourier frequencies.

4. Defined, for the spectrum, as the rank of the residue of the resolvent map.
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