
Séminaire BOURBAKI Janvier 2020

72
e
année, 2019–2021, n

o
1170, p. 131 à 157

doi : 10.24033/ast.1159

HODGE THEORY AND O-MINIMALITY
[after B. Bakker, Y. Brunebarbe, B.Klingler, and J. Tsimerman]

by Javier Fresán

INTRODUCTION

Envisioned by Grothendieck (1984) as a way out of the pathologies that one

encounterswhendealingwith all topological spaces, tame topologyhas reachedmaturity

over the last decades through the study of o-minimal structures in model theory. In a

nutshell, attention is restricted to those topological spaces obtained by gluing finitely

many subsets of R=
that are definable by first order formulas involving the operations

and the order coming from the real numbers, as well as functions of a certain class

chosen beforehand. The collection of such sets is called a structure, and one says that

a structure is o-minimal if the only definable subsets of R are finite unions of points

and open intervals. For example, the structure Ran,exp in which the class of functions

consists of real analytic functions on the unit hypercube and the real exponential is

o-minimal. In developing a complex geometry with definable open subsets as charts,

this axiom allows for global algebraicity results without renouncing the local flexibility

of analytic varieties, as is best illustrated by the o-minimal Chow theorem of Peterzil

and Starchenko (2009): if a closed analytic subset of a complex algebraic variety is

definable in some o-minimal structure, then it is automatically algebraic, whether the

ambient space is proper or not. In a slightly different direction, a celebrated theorem

of Pila and Wilkie (2006) affirms that definable subsets of C=
with many rational

points of bounded height necessarily contain non-trivial semialgebraic subsets on

which most of these points will lie. By means of this result, o-minimality has found

spectacular applications to diophantine geometry. My aim in this survey is to convey

the idea that it has very recently become an important tool to understand Hodge

theory as well.

Our main object of interest will be the period maps describing how Hodge structures

vary on a family of smooth projective varieties. As a case study, one may think of

the Legendre family of elliptic curves parameterised by the punctured projective

line ( = ℙ1 r {0, 1,∞}. The fibres ℰB are the projective completions of the affine plane

curves H2 = G(G − 1)(G − B). On a small neighbourhood around each point of (,

all fibres are canonically diffeomorphic, so we may choose a common symplectic
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basis �1 , �2 of the first homology group �1(ℰB , Z). By contrast, the position of the

line C$ ⊂ �1(ℰB ,C) spanned by the holomorphic differential $ = dG/H will vary

as B moves, for it encodes the complex structure on ℰB . This is our first example of

a polarised variation of pure Hodge structures. Concretely, the line in question is

determined by the ratio

∫
�2
$ /

∫
�1
$ of the two periods of the form $, and this gives a

multivalued map from ( to the upper half-plane ℌ. The monodromy being governed

by the congruence subgroup Γ(2) of SL2(Z), it descends to a holomorphic map from (

to the modular curve Γ(2)\ℌ. In this very special case, the target is an algebraic variety

and the period map is even an isomorphism.

For more general families, the role of ℌ is played by a homogeneous space �/"
classifying polarised Hodge structures of the same type as those on the cohomology

of the fibres, the modular curve is replaced by the quotient (Γ,�," of �/" by an

arithmetic subgroup Γ ⊂ �, and the period map is a holomorphic map from the

parameter space to (Γ,�," . As soon as one leaves the realm of abelian varieties, these

arithmetic quotients are complex analytic spaces which almost never carry an algebraic

structure, so the holomorphic, non-algebraic period maps could a priori behave wildly

at infinity. Nevertheless, Bakker, Klingler, and Tsimerman (2020) show that all

periodmaps have tame geometry: they are definable in the o-minimal structureRan,exp
relatively to a natural semialgebraic structure on (Γ,�," . From this and the o-minimal

Chow theorem, they derive a new proof of the algebraicity of Hodge loci, originally a

theorem by Cattani, Deligne, and Kaplan (1995). As another striking application of

definability of period maps, along with a new o-minimal GAGA theorem, Bakker,

Brunebarbe, and Tsimerman (2018) recently established a long-standing conjecture

of Griffiths to the effect that their images are quasi-projective algebraic varieties.

Things are rapidly moving and I feel other breakthroughs are to come.

The text is organised as follows. In section 1, we recall the construction of the

period map associated with a polarised variation of pure Hodge structures. Section 2

starts with a very brief introduction to o-minimal structures, before turning to the

o-minimal Chowand the o-minimalGAGA theorems. After introducing the key notion

of Siegel sets, we prove that arithmetic quotients admit a functorial semialgebraic

definable structure in section 3. Then section 4 is devoted to the proof of definability

of period maps, which relies on a fine description of their asymptotic behaviour near

the boundary. Finally, we present the applications to algebraicity of Hodge loci and

Griffiths’s conjecture in sections 5 and 6 respectively. I recommend the lecture notes

by Bakker (2019) as a complementary reading.

Acknowledgments. — I would like to thank Benjamin Bakker, Olivier Benoist, Yohan

Brunebarbe, Bruno Klingler, Emmanuel Kowalski, and Marco Maculan for their help

in preparing these notes, as well as all the speakers and participants of the reading

seminar “Théorie deHodge et o-minimalité” at theUniversité d’Orsay and the summer

school “o-minimal structures in algebraic geometry” at the University of Freiburg,

where I first learnt part of the material.
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1. VARIATIONS OF HODGE STRUCTURES AND PERIOD MAPS

1.1. Polarised pure Hodge structures

Let : be an integer. A pure Hodge structure� of weight : is a finitely generated abelian

group �Z together with a bigrading

�C = �Z ⊗Z C =
⊕
?+@=:

�?,@

satisfying �?,@ = �@,?
, where barring stands for complex conjugation. On setting

�? =
⊕
A≥?

�A,B ,

these data amount to a finite decreasing filtration �• of �C such that �? ⊕ �:+1−? = �C
holds for all ?. The dimensions ℎ?,@ = dimC �

?,@
are called the Hodge numbers, and

�• is called the Hodge filtration. Yet another equivalent way of thinking of Hodge

structures is as representations

! : S −→ GL(�R )
of Deligne’s torus S, which is the real algebraic group of invertible matrices of the

form

(
0 −1
1 0

)
. Being pure of weight : is then the condition that the diagonal subtorus(

C 0
0 C

)
acts through the homothety of ratio C: , and �?,@

is recovered as the eigenspace

for the character I ↦→ I−? · I −@ of S(R) � C× acting on �C. A morphism of Hodge

structures is a homomorphism of the underlying abelian groups that is compatible

with the Hodge filtration, or equivalently with the action of S.
Let @Z : �Z × �Z → Z be a bilinear form which is symmetric if : is even and

alternating if : is odd. The associated Hodge form is the hermitian form

ℎ : �C × �C −→ C, ℎ(D, E) = @C(�D, E ),
where � is the Weil operator acting as multiplication by i ?−@ on the summand �?,@

.

We say that @Z is a polarisation on �, or that � is polarised by @Z, if the Hodge decom-

position is ℎ-orthogonal and ℎ is positive-definite; in other words, if

a) ℎ(D, E) = 0 whenever D and E lie in different subspaces �?,@
,

b) ℎ(D, D) > 0 for all non-zero D ∈ �C.

In particular, @Q is non-degenerate. The above conditions,whichgeneralise the classical

Riemann relations for abelian varieties, are often referred to as bilinear Hodge–Riemann
relations. In terms of the Hodge filtration, a) says that the orthogonal complement

of �? with respect to @Z is precisely �:+1−?
. If Z(−:) denotes the Hodge structure of

weight 2: on Z, it also amounts to asking that

@Z : � ⊗ � −→ Z(−:)
is a morphism of Hodge structures. When a polarisation exists, we say that � is

polarisable.
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Example 1.1. Let - be a smooth projective complex variety of dimension =. Singular

cohomology � :(-, Z) carries a polarisable pure Hodge structure of weight :.

Upon identifying its complexification � :(-,C) with algebraic de Rham cohomol-

ogy � :(-,Ω•
-
), the Hodge filtration is given by

�? = Im
(
� :(-,Ω•≥?

-
) −→ � :(-,C)

)
.

Polarisations come from choosing the class of a hyperplane section � ∈ �2(-, Z) and
considering the Lefschetz operator ! : �∗(-, Z) → �∗+2(-, Z) given by cup product

with �. For each 9 ≤ =, the 9-th primitive cohomology is defined as

% 9(-, Z) = ker
(
!=−9+1 : � 9(-, Z) → �2=−9+2(-, Z)

)
,

which is a sub-Hodge structure of � 9(-, Z). According to the Lefschetz theorems, it is

polarised by the intersection form

@
9

Z : % 9(-, Z) × % 9(-, Z) −→ Z, (
, �) ↦−→ (−1) 1
2 9(9−1)

∫
-

�=−9 · 
 · �,

and the whole cohomology in each degree : decomposes rationally as the direct sum

� :(-,Q) =
b:/2c⊕
8=0

!8%:−28(-,Q),

where the Lefschetz operator and primitive cohomology are now taken with rational

coefficients and % 9(-,Q) = 0 for all 9 > =. Modifying the signs as (−1)8@:−28
Q on the 8-th

summand gives rise to a polarisation on � :(-,Q) that, after clearing denominators

by multiplying by a sufficiently large integer, induces a polarisation on � :(-, Z).

1.2. Period domains
The book by Carlson, Müller-Stach, and Peters (2017) is an accessible reference

for this section. Fix an integer :, a finitely generated abelian group �Z of rank A, a

bilinear form @Z on �Z which is symmetric if : is even and alternating if : is odd, and

a collection of non-negative integers {ℎ?,@}?+@=: such that ℎ?,@ = ℎ@,? and
∑
ℎ?,@ = A.

Associated with these data is a period domainD classifying pure Hodge structures of

weight : on �Z which are polarised by @Z and have Hodge numbers ℎ?,@ .

AlthoughD is a priori only a set, it can be endowed with the structure of a complex

manifold as follows. Setting 5 ? =
∑
A≥? ℎ

?,@
, one first considers the compact dual

(1) Ď =

{
finite decreasing filtrations �• on �C such that

(�?)⊥ = �:+1−?
and dim �? = 5 ?

}
,

which is a closed analytic subset of the product of Grassmannians

∏
? Gr( 5 ? , �C), and

hence a projective complex variety. The period domain is the open subset D ⊂ Ď
consisting of those filtrations for which the Hodge form is positive-definite.

Let G = Aut(�Q , @Q) be the group of automorphisms 6 ∈ GL(�Q) which are

compatible with the polarisation in that @Q(6(G), 6(H)) = @Q(G, H) for all G, H ∈ �Q.

It is a semisimple linear algebraic group over Q. By an elementary argument in linear
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algebra, its complex points G(C) operate transitively on Ď. The compact dual is hence

smooth and the period domain inherits the structure of a complex manifold from it.

More is true: the subgroup G(R) preservesD ⊂ Ď and the induced action is transitive

as well. If we choose some base point ofD and we let � and " denote its stabilisers

in G(C) and �(R) respectively, the period domain can be realised as the quotient

D = G(R)/" ↩−→ Ď = G(C)/�.

Since " consists of real elements and �?,@ = �? ∩ �@ , it not only leaves the Hodge

filtration invariant but also theWeil operator and thus the Hodge form; as any isotropy

group of a positive-definite hermitian form, " is hence a compact subgroup of �(R).

Example 1.2. If : = 1 and the only non-zero Hodge numbers are ℎ1,0 = ℎ0,1 = 6, the

period domain is the subset of Gr(6, �C) consisting of totally isotropic subspaces �1

onwhich the hermitian form i @C(D, D) is positive-definite. After choosing a symplectic

basis {41 , . . . , 46 , 51 , . . . , 56} of �C, each �
1
has a unique basis of the form

$8 = 48 +
6∑
9=1

I 9 ,8 59 (8 = 1, . . . , 6),

and it follows from the bilinear Hodge–Riemann relations that the complex 6 × 6
matrix / = (I8 , 9) is symmetric and has positive-definite imaginary part. Therefore,

the period domainD is in bĳection with Siegel’s upper half-space

ℌ6 =
{
6 × 6 symmetric matrices / = - + 8. with . positive-definite

}
.

In this case, G = Sp26 is the symplectic group," = U6 is amaximal compact subgroup

of its real points, and ℌ6 = G(R)/" is a hermitian symmetric domain.

1.3. Variations of polarised pure Hodge structures

Let ( be a smooth connected quasi-projective complex variety. By a local system
on ( we mean a locally constant sheafVZ of finitely generated abelian groups on ((C).
Upon choosing a base point B0 ∈ (, giving a local system on ( amounts to giving a

representation

� : �1((, B0) −→ GL(VZ,B0)
of the fundamental group based at B0, which is called the monodromy representation.
Another incarnation of the local systemVZ is the holomorphic flat vector bundle

(VO ,∇) = (VZ ⊗Z( O( , id ⊗ 3).

An example to keep in mind arises from families of algebraic varieties parame-

terised by (. Namely, if 5 : X → ( is a smooth projective morphism from a smooth

quasi-projective variety X, the sheaf

VZ = '
: 5∗ZX
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