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MAXIMAL ESTIMATES FOR THE KRAMERS–FOKKER–PLANCK
OPERATOR WITH ELECTROMAGNETIC FIELD

by Bernard Helffer & Zeinab Karaki

Abstract. — In continuation of a former work by the first author with F. Nier (2009)
and of a more recent work by the second author on the torus (2019), we consider the
Kramers–Fokker–Planck operator (KFP) with an external electromagnetic field on
Rd. We show a maximal type estimate on this operator using a nilpotent approach for
vector field polynomial operators and induced representations of a nilpotent graded
Lie algebra. This estimate leads to an optimal characterization of the domain of the
closure of the (KFP) operator and a criterion for the compactness of the resolvent.

Résumé (Estimation maximale pour l’opérateur de Kramers-Fokker-Planck avec champ
électromagnétique). — Dans la continuité d’un travail antérieur du premier auteur
avec F. Nier (2009) et d’un travail plus récent du deuxième auteur sur le tore (2019),
nous considérons l’opérateur de Kramers-Fokker-Planck (KFP) avec un champ élec-
tromagnétique sur Rd. Nous montrons une estimation de type maximal sur cet opé-
rateur en utilisant une approche nilpotente pour les opérateurs polynômes de champs
de vecteurs et des représentations induites d’une algèbre de Lie graduée nilpotente.
Cette estimation conduit à une caractérisation optimale du domaine de la fermeture
de l’opérateur (KFP) et à un critère de compacité de la résolvante.
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1. Introduction and main results

1.1. Introduction. — The Fokker–Planck equation was introduced by Fokker
and Planck at the beginning of the twentieth century to describe the evolution
of the density of particles under Brownian motion. In recent years, global hy-
poelliptic estimates have led to new results motivated by applications to the
kinetic theory of gases. In this direction, many authors have shown maximal
estimates to deduce the compactness of the resolvent of the Fokker–Planck op-
erator and to have resolvent estimates in order to address the issue of return
to the equilibrium. F. Hérau and F. Nier in [5] highlighted the links between
the Fokker–Planck operator with a confining potential and the associated Wit-
ten Laplacian. Later, this work was extended in the book of B. Helffer and
F. Nier [2], and we refer more specifically to their Chapter 9 for a proof of the
maximal estimate.

In this article, we continue the study of the model case of the operator of
Fokker–Planck with an external magnetic field Be, which was initiated in the
case of the torus Td (d = 2, 3) in [9, 10], by considering Rd and reintroducing
an electric potential as in [2]. In this context, we establish a maximal-type
estimate for this model, giving a characterization of the domain of its closed
extension and giving sufficient conditions for the compactness of the resolvent.

1.2. Statement of the result. — For d = 2 or 3, we consider, for a given external
electromagnetic field Be defined on Rd with value in Rd(d−1)/2 and a real val-
ued electric potential V defined on Rd, the associated Kramers–Fokker–Planck
operator K (in short KFP) defined by:

K = v · ∇x −∇xV · ∇v − (v ∧Be) · ∇v −∆v + v2/4− d/2 ,(1)

where v ∈ Rd represents the velocity, x ∈ Rd represents the space variable, and
the notation (v ∧Be) · ∇v means:

(v ∧Be) · ∇v =





b(x) (v1∂v2 − v2∂v1) if d = 2
b1(x)(v2∂v3 − v3∂v2) + b2(x)(v3∂v1 − v1∂v3)

+ b3(x)(v1∂v2 − v2∂v1) if d = 3 .
The operator K is initially considered as an unbounded operator on the Hilbert
space L2(Rd × Rd), whose domain is D(K) = C∞0 (Rd × Rd).

We then denote by:
• Kmin the minimal extension of K where D(Kmin) is the closure of D(K)
with respect to the graph norm;

• Kmax the maximal extension of K where D(Kmax) is given by:
D(Kmax) = {u ∈ L2(Rd × Rd) |Ku ∈ L2(Td × Rd)} .

We will use the notation K for the operator Kmin or KBe,V if we want to
mention the reference to Be and V .
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The existence of a strongly continuous semigroup associated to operator
K when the magnetic field is regular, and V = 0 is shown in [9]. We will
improve this result by considering a much lower regularity. In order to obtain
the maximal accretivity, we are led to substitute the hypoellipticity argument
by a regularity argument for the operators with coefficients in L∞loc, which will
be combined with the more classical results of Rothschild–Stein in [12] for
Hörmander operators of type 2 (see [6] for more details of this subject). Our
first result is:

Theorem 1.1. — If Be ∈ L∞loc(Rd,Rd(d−1)/2) and V ∈W 1,∞
loc (Rd), then KBe,V

is maximally accretive.

The theorem implies that the domain of the operator K = Kmin has the
following property:

D(K) = D(Kmax) .(2)
We are next interested in specifying the domain of the operator K introduced
in (2). For this goal, we will establish a maximal estimate for K, using tech-
niques that were initially developed for the study of hypoellipticity of invariant
operators on nilpotent groups and the proof of the Rockland conjecture. Before
we state our main result, we introduce the following functional spaces:
• B2(Rd) (or B2

v to indicate the name of the variables) denotes the space:
B2(Rd) := {u ∈ L2(Rd) | ∀(α, β) ∈ N2d, |α|+ |β| ≤ 2 , vα ∂βv u ∈ L2(Rd)} ,

which is equipped with its natural Hilbertian norm.
• B̃2(Rd×Rd) is the space L2

x⊗̂B2
v (in L2(Rd×Rd) identified with L2

x⊗̂L2
v)

with its natural Hilbert norm.
• H2(R2d) is the Sobolev space of degree 2 associated with the vector
fields ∂

∂vj
(j = 1, . . . , d) , i v` (` = 1, . . . , d) with weight 1 and v · ∇x

with weight 2 as introduced in [10, Section 2]. It also reads
H2(R2d) = {u ∈ B̃2(R2d) , v · ∇xu ∈ L2(R2d)} .

• H2
loc(R2d) is the space of functions that are locally in H2(R2d).

We can now state the second theorem of this article:

Theorem 1.2. — Let d = 2 or 3. We assume that Be ∈ C1(Rd,Rd(d−1)/2) ∩
L∞(Rd,Rd(d−1)/2), V ∈ C2(Rd,R) and that there exist positive constants C,
ρ0 >

1
3 , and γ0 <

1
3 , such that
|∇xBe(x)| ≤ C〈∇V (x)〉γ0 ,(3)
|Dα

xV (x)| ≤ C〈∇V (x)〉1−ρ0 , ∀α s.t. |α| = 2 ,(4)
where

〈∇V (x)〉 =
√
|∇V (x)|2 + 1 .
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Then there exists C1 > 0 such that, for all u ∈ C∞0 (Rd × Rd), the operator
K satisfies the following maximal estimate:

∥∥|∇V (x)| 23 u
∥∥+ ‖(v · ∇x −∇xV · ∇v − (v ∧Be) · ∇v)u‖+ ‖u‖B̃2

≤ C1(‖Ku‖+ ‖u‖) .
(5)

The proofs will combine the previous works of [2] (in the case Be = 0) and
[10] (in the case V = 0) with, in addition, two differences:
• Td is replaced by Rd .
• The reference operator in the enveloping algebra of the nilpotent algebra
is different.

Notice also that when Be = 0, our assumptions are weaker than in [2] where
the property that |∇V (x)| tends to +∞ as |x| → +∞ was used to construct
the partition of unity.

Using the density of C∞0 (Rd×Rd) in the domain of K, we obtain the following
characterization of this domain:

Corollary 1.3. —

D(K) =
{
u ∈ B̃2(Rd × Rd)

∣∣ (v · ∇x −∇V · ∇v − (v ∧Be) · ∇v)u
and |∇V (x)| 23 u ∈ L2(Rd × Rd)

}
.

(6)

In particular, this implies that under the assumptions of Theorem 1.2, the
operator KBe,V has a compact resolvent if and only if KBe=0,V has the same
property. This is, in particular, the case (see [2]) when

|∇V (x)| → +∞ when |x| → +∞ ,

as can also be seen directly from (6).

Remark 1.4. — For more results in the case without a magnetic field, we
refer the reader to [2] and recent results obtained in 2018 by Wei-Xi Li [11]
and in 2019 by M. Ben Said [1] in connection with a conjecture of Helffer and
Nier relating the compact resolvent property for the (KFP)-operator with the
same property for the Witten Laplacian on (0)-forms: −∆x,v + 1

4 |∇Φ|2− 1
2∆Φ,

with Φ(x, v) = V (x) + v2

2 . Its proof also involves nilpotent techniques. One
can then naturally ask about results when Be(x) is unbounded. In particular,
the existence of (KFP)-magnetic bottles (i.e., the compact resolvent property
for the (KFP)-operator) when V = 0 is natural. Here, we simply observe that
Proposition 5.19 in [2] holds (with exactly the same proof) for KBe,V when Be
and V are C∞. Hence, there are no (KFP)-magnetic bottles.
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2. Maximal accretivity for the Kramers–Fokker–Planck operator
with a weakly regular electromagnetic field

To prove Theorem 1.1, we will show the Sobolev regularity associated with
the following problem

K∗f = g with f, g ∈ L2
loc(R2d) ,

where K∗ is the formal adjoint of K:

K∗ = −v · ∇x −∆v + (v ∧Be +∇xV ) · ∇v + v2/4− d/2 .(7)

The result of Sobolev regularity is the following:

Theorem 2.1. — Let d = 2 or 3. We suppose that Be ∈ L∞loc(Rd,Rd(d−1)/2),
and V ∈W 1,∞

loc (Rd×Rd). Then, for all f ∈ L2
loc(R2d), such that K∗f = g with

g ∈ L2
loc(R2d), f ∈ H2

loc(R2d) .

Before proving Theorem 2.1, we recall the following result :

Proposition 2.2 (Proposition A.3 in [10]). — Let cj ∈ L∞,2loc (Rd × Rd), j =
1, . . . , d, where L∞,2loc (Rd×Rd) = {u ∈ L2

loc, ∀ϕ ∈ C∞0 (Rd×Rd) such that ϕu ∈
L∞x (L2

v)}, such that

∂vj (cj(x, v)) = 0 in D′(R2d) , ∀j = 1, . . . , d .(8)

Let P0 be the Kolmogorov operator

P0 := −v · ∇x −∆v .(9)

If h ∈ L2
loc(R2d) satisfies





P0h =
d∑

j=1
cj(x, v) ∂vj hj + g̃

hj , g̃ ∈ L2
loc(R2d), ∀j = 1, . . . , d ,

(10)

then ∇v h ∈ L2
loc(R2d,Rd) .

We can now give the proof of Theorem 2.1.

Proof of Theorem 2.1. — The proof is similar to that of Theorem A.2 in [10].
In the following, we will only focus on the differences appearing in our case. To
show the Sobolev regularity of the problem K∗ f = g with f and g ∈ L2

loc(R2d)
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