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LAGRANGIAN FIBRATIONS
ON HYPERKÄHLER MANIFOLDS –

ON A QUESTION OF BEAUVILLE

 D GREB, C LEHN  S ROLLENSKE

A. – Let X be a compact hyperkähler manifold containing a complex torus L as a
Lagrangian subvariety. Beauville posed the question whether X admits a Lagrangian fibration with
fibre L. We show that this is indeed the case if X is not projective. If X is projective we find an almost
holomorphic Lagrangian fibration with fibre L under additional assumptions on the pair (X, L),
which can be formulated in topological or deformation-theoretic terms. Moreover, we show that for
any such almost holomorphic Lagrangian fibration there exists a smooth good minimal model, i.e., a
hyperkähler manifold birational to X on which the fibration is holomorphic.

R. – Soit X une variété hyperkählérienne compacte contenant un tore complexe L en tant
que sous-variété lagrangienne. A. Beauville a posé la question suivante : la variété X admet-elle une
fibration lagrangienne de fibre L? Nous démontrons que c'est le cas si X n'est pas projective. Si X

est projective nous montrons l’existence d’une fibration lagrangienne presque holomorphe de fibre L

sous des hypothèses plus restrictives sur la paire (X, L). Ces hypothèses peuvent se formuler de deux
manières : en termes topologiques ou grâce à la théorie des déformations de (X, L). Par ailleurs, nous
démontrons que pour une telle fibration lagrangienne presque holomorphe il y a toujours un bon
modèle minimal lisse, c'est-à-dire une variété hyperkählérienne birationelle à X sur laquelle la fibration
est holomorphe.

Introduction

By the classical decomposition theorem of Beauville-Bogomolov, every compact Käh-
ler manifold with vanishing first Chern class admits a finite cover which decomposes as a
product of tori, Calabi-Yau manifolds, and hyperkähler manifolds, see e.g., [5, Thm. 1].
While tori are quite well-understood, a classification of Calabi-Yau and hyperkähler
manifolds is still far out of reach. Only in dimension 2, where Calabi-Yau and hyperkähler
manifolds coincide, the theory of K3-surfaces provides a fairly complete picture.

Let now X be a hyperkähler manifold, that is, a compact, simply-connected Kähler
manifold X such that H0(X,Ω2

X) is spanned by a holomorphic symplectic form σ. From a
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differential geometric point of view hyperkähler manifolds are Riemannian manifolds with
holonomy the full unitary-symplectic group Sp(n).

An important step in the structural understanding of a manifold is to decide whether
there is a fibration f : X → B over a complex space of smaller dimension. For hyperkähler
manifolds it is known that in case such f exists, it is a Lagrangian fibration: dimX = 2 dimB,
and the holomorphic symplectic form σ restricts to zero on the general fibre. Additionally, by
the Arnold-Liouville theorem the general fibre is a smooth Lagrangian torus, see Section 1.2
for a detailed discussion.

In accordance with the case of K3-surfaces (and also motivated by mirror symmetry)
a simple version of the so-called Hyperkähler SYZ-conjecture(1) asks if every hyperkähler
manifold can be deformed to a hyperkähler manifold admitting a Lagrangian fibration. With
this as a starting point, an approach to a rough classification of hyperkähler manifolds has
been proposed, see e.g., [41]. A more sophisticated version of the SYZ-conjecture is discussed
in Section 6.1.

Here we approach the question of existence of a Lagrangian fibration on a given hyper-
kähler manifold X under a geometric assumption proposed by Beauville [7, Sect. 1.6]:

Q B. – Let X be a hyperkähler manifold and L ⊂ X a Lagrangian submanifold
biholomorphic to a complex torus. Is L a fibre of a (meromorphic) Lagrangian fibration
f : X → B?

Building on work of Campana, Oguiso, and Peternell [10] we give a positive answer in case
X is not projective.

T 4.1. – LetX be a non-projective hyperkähler manifold of dimension 2n contain-
ing a Lagrangian subtorus L. Then the algebraic dimension of X is n, and there exists an alge-
braic reduction f : X → B of X that is a holomorphic Lagrangian fibration with fibre L.

In the case of projective hyperkähler manifold X containing a Lagrangian subtorus L,
we work out a necessary and sufficient criterion for the existence of an almost holomorphic
fibration with fibre L, i.e., for a slightly weaker positive answer to Beauville’s question.

T 5.3. – Let X be a projective hyperkähler manifold and L ⊂ X a Lagrangian
subtorus. Then the following are equivalent.

1. X admits an almost holomorphic Lagrangian fibration with strong fibre L.
2. The pair (X,L) admits a small deformation (X ′, L′) with non-projective X ′.
3. There exists an effective divisor D on X such that c1(OX(D)|L) = 0 ∈ H1,1

(
L, R

)
.

Here, strong fibre means that f is holomorphic nearL, andL is a fibre of the corresponding
holomorphic map. The proof of Theorem 5.3 consists of two major steps: First, assuming
the existence of a small deformation of (X,L) to a non-projective pair (X ′, L′), we use
Theorem 4.1 to produce a Lagrangian fibration with fibre L′ onX ′ and then degenerate this
fibration to an almost-holomorphic fibration on (X,L) using relative Barlet spaces. Second,
the existence of a small deformation to a non-projective pair (X ′, L′) is characterised in terms

(1) We refer the reader to [42] for a historical discussion concerning the emergence of this conjecture.
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of periods in H2
(
X, C

)
. This finally leads to the condition on the existence of a special

divisor, as stated in part (iii) of Theorem 5.3.(2)

From the discussion above the question arises how far an almost holomorphic fibration
is away from answering Beauville’s question in the strong form. If f : X 99K B is an almost
holomorphic Lagrangian fibration, then it is natural to search for a holomorphic model of f
in the same birational equivalence class. This is done in the final section, where using the
recent advances in higher-dimensional birational geometry ([8, 19]) the following result is
proven.

T (see Theorem 6.3). – LetX be a projective hyperkähler manifold with an almost
holomorphic Lagrangian fibration f : X 99K B. Then there exists a holomorphic model for f
on a birational hyperkähler manifold X ′. In other words, there is a commutative diagram

X

f

��

// X ′

f ′

��
B // B′

where f ′ is a holomorphic Lagrangian fibration on X ′ and the horizontal maps are birational.

Theorem 6.3 proves a special version of the Hyperkähler SYZ-conjecture. Related results
were obtained by Amerik and Campana [1, Thm. 3.6] in dimension four. Note furthermore
that birational hyperkähler manifolds are deformation-equivalent by work of Huybrechts
[20, Thm. 4.6], so Theorem 6.3 might also lead to a new approach to the general case of the
Hyperkähler SYZ-conjecture.

The connection to this circle of ideas is also manifest in the following generalization of a
result of Matsushita, which we obtain as a corollary of Theorem 6.3.

T 6.12. – Let X be a projective hyperkähler manifold and f : X 99K B

an almost holomorphic map with connected fibres onto a normal projective variety B.
If 0 < dimB < dimX, then dimB = 1

2 dimX, and f is an almost holomorphic Lagrangian
fibration.
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1. Preliminaries on hyperkähler manifolds

We collect a few basic definitions and properties of the objects of our study.

D 1.1. – An irreducible holomorphic symplectic manifold or hyperkähler mani-
fold is a simply-connected compact Kähler manifoldX such thatH0

(
X, Ω2

X

)
is spanned by

an everywhere non-degenerate holomorphic two-form σ.

Actually, the notion of hyperkähler manifold is of differential-geometric origin and stands
for a Ricci-flat Kähler manifold with holonomy group Sp(n). It was shown by Beauville in
[5, Prop 4] that this condition is equivalent to the existence of a holomorphic symplectic
form unique up to scalars; often the terms irreducible holomorphic symplectic manifold and
hyperkähler manifold are therefore used synonymously.

1.1. The Beauville-Bogomolov form

The second cohomology H2
(
X, Z

)
of a hyperkähler manifold X carries a natural, inte-

gral symmetric bilinear form

q = qX : H2
(
X, Z

)
×H2

(
X, Z

)
→ Z,

the so-called Beauville-Bogomolov-Fujiki form (see [5, Thm. 5] or [21, Def. 22.8]). Since we
need to consider the restriction of this form to subspaces where it might be degenerate, we
give its signature as a triple containing (in this order) the number of positive, zero, and
negative eigenvalues of the associated real symmetric bilinear form. In this notation q has
signature (3, 0, b2(X) − 3), and its restriction to H1,1(X,R) has signature (1, 0, h1,1 − 1),
see [21, Cor. 23.11].

Let ρ = ρ(X) be the Picard number of X, that is, the rank of the Néron-Severi group
NS(X) = H1,1(X) ∩ H2(X,Q). We distinguish hyperkähler manifolds according to the
signature of the restriction of q to NS(X). We call X hyperbolic if q|NS(X) has signature
(1, 0, ρ−1), parabolic if q|NS(X) has signature (0, 1, ρ−1), and elliptic if q|NS(X) has signature
(0, 0, ρ). The relevance of these notions is underlined by the following result of Huybrechts.

T 1.2 (Prop. 26.13 of [21]). – A hyperkähler manifold X is projective if and only
if X is hyperbolic.
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