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QUADRATIC DIFFERENTIALS IN LOW GENUS:
EXCEPTIONAL AND NON-VARYING STRATA

 D CHEN  M MÖLLER

A. – We give an algebraic way of distinguishing the components of the exceptional strata
of quadratic differentials in genus three and four. The complete list of these strata is (9,−1), (6, 3,−1),
(3, 3, 3,−1) in genus three and (12), (9, 3), (6, 6), (6, 3, 3) and (3, 3, 3, 3) in genus four. The upshot of
our method is a detailed study regarding the geometry of canonical curves.

This result is part of a more general investigation about the sum of Lyapunov exponents of Teich-
müller curves, building on [9], [6] and [7]. Using disjointness of Teichmüller curves with divisors of Brill-
Noether type on the moduli space of curves, we show that for many strata of quadratic differentials in
low genus the sum of Lyapunov exponents for the Teichmüller geodesic flow is the same for all Teich-
müller curves in that stratum.

R. – Nous présentons une façon algébrique de distinguer les composantes exceptionnelles
des strates de l’espace de modules des différentielles quadratiques en genres trois et quatre. La liste
complète de ces strates est (9,−1), (6, 3,−1) et (3, 3, 3,−1) en genre trois, (12), (9, 3), (6, 6), (6, 3, 3)

et (3, 3, 3, 3) en genre quatre, respectivement. La distinction est basée sur des propriétés géométriques
du modèle canonique de ces courbes.

Ce résultat fait partie de la détermination de la somme des exposants de Lyapunov des courbes de
Teichmüller, dans la continuité de [9], [6] et [7]. Pour beaucoup de strates en petit genre les courbes
de Teichmüller sont disjointes des diviseurs de type Brill-Noether. On en déduit que la somme des
exposants de Lyapunov de toute courbe de Teichmüller dans ces strates est égale à la somme des
exposants pour la mesure à support sur toute la strate.

1. Introduction

The moduli space Ω Mg of Abelian differentials, also called the Hodge bundle, parame-
terizes Abelian differentials ω on genus g Riemann surfaces. Let m1, . . . ,mk be positive in-
tegers such that

∑k
i=1mi = 2g − 2. Then Ω Mg decomposes into strata Ω Mg(m1, . . . ,mk)

according to the number and multiplicity of the zeros of ω. Since the Teichmüller geodesic
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flow preserves these strata, many problems in Teichmüller theory can be dealt with stratum
by stratum.

Similarly, let d1, . . . , dn be non-zero integers such that
∑n
j=1 dj = 4g − 4 and dj ≥ −1

for all j. The moduli space of quadratic differentials parameterizing pairs (X, q) of a genus g
Riemann surface X and a quadratic differential q with at most simple poles is stratified in
the same way into Q(d1, . . . , dn), namely, q has a zero of multiplicity di at some point pi
for di > 0 and has a simple pole at pj for dj = −1.

Not much is known on the topology of the strata. Kontsevich and Zorich determined
in [14] the connected components of Ω Mg(m1, . . . ,mk). Some strata have hyperelliptic com-
ponents parameterizing Abelian differentials on hyperelliptic curves that have a single zero or
a pair of zeros interchangeable under the hyperelliptic involution, some strata have compo-
nents distinguished by the spin parity dimH0(X,div(ω)/2) mod 2, and the others are con-
nected. The connected components for strata of quadratic differentials were determined by
Lanneau in [16]. Some have hyperelliptic components and besides a short list of exceptional
cases, all the other strata are connected.

To find an algebraic invariant distinguishing the exceptional cases remained an open
problem. Our first main result provides a solution to this problem. Let (X, q) be a quadratic
differential in Q(d1, . . . , dn). Suppose q has a zero or pole of order di at pi for 1 ≤ i ≤ n.
Write div(q) =

∑n
i=1 dipi as the total divisor of q and div(q)0 =

∑
di>0 dipi as the zero

divisor of q.

T 1.1. – Each of the strata (9,−1), (6, 3,−1) and (3, 3, 3,−1) in genus three has
precisely two connected components, distinguished by

dimH0(X,div(q)0/3) = 1 resp. dimH0(X,div(q)0/3) = 2.

We also construct the connected components using techniques from algebraic geometry.
This provides a proof of the connectedness (and irreducibility) of the two components that
does not rely on any geometry of flat surfaces.

For g = 4 we discovered that the list of exceptional strata was incomplete in [16].

T 1.2. – Each of the strata (12), (9, 3), (6, 6), (6, 3, 3) and (3, 3, 3, 3) in genus four
has precisely two non-hyperelliptic connected components, distinguished by

dimH0(X,div(q)/3) = 1 resp. dimH0(X,div(q)/3) = 2.

Let us describe the upshots in proving Theorems 1.1 and 1.2, see Sections 6 and 7
for details. Consider the stratum (9,−1) as an example. The canonical model of a non-
hyperelliptic, genus three curve X is a plane quartic. If X admits a quadratic differential q
with div(q) = 9p1 − p2, then there exists a unique plane cubic E such that E and X in-
tersect at p1 with multiplicity 9. Furthermore, we have OE(9p1) ∼ OE(3), where O(1) is
the universal line bundle of P2. Two possibilities can occur, either OE(3p1) ∼ OE(1) or
OE(3p1) 6∼ OE(1), which distinguishes the claimed two components. In order to construct
these two components, we first fix E and p1, then consider plane quartics intersecting E
at p1 with multiplicity 9, and finally quotient out the parameter space by the automorphism
group of P2. The same idea applies to the exceptional strata in genus four, using the fact that
a canonical curve of genus four is contained in a unique quadric surface in P3.
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In order to use the parity curve E, we need to control its singularities, which boils down
to a tedious local analysis. To avoid confusing the reader by technical details, we postpone
the argument to Appendix B.

We remark that the criteria related to div0(q)/3 and div(q)/3 are analogous to that
of div(ω)/2 in distinguishing the odd and even spin components of certain strata of Abelian
differentials, see [14] and Sections 6, 7 for more details. It is well-known that the spin parity
associated to div(ω)/2 is a deformation invariant, but the parity associated to div0(q)/3

and div(q)/3 seems only an isolated example in low genus. Indeed, one can compute
dimH0(X,div(ω)/2) mod 2 by using the Arf invariant, see [14, Section 3]. But an inter-
pretation of dimH0(X,div0(q)/3) and dimH0(X,div(q)/3) in terms of flat geometry is
not known. We thus leave an interesting open question: compute the parity of div0(q)/3

resp. div(q)/3 using flat geometry only, as for the Arf invariant.
The above results were obtained in parallel with our investigation of sums of Lyapunov ex-

ponents for Teichmüller curves. In this sense, the present paper is a continuation to quadratic
differentials of our paper [7]. A connected component of a stratum was called non-varying,
if for all Teichmüller curves in this stratum the sum of Lyapunov exponents is the same, and
varying otherwise. We proved that many strata (components) of Abelian differentials in low
genus are non-varying.

Let us recall the basic idea in [7]. The Siegel-Veech area constant c, the sum of Lyapunov
exponents L and the slope s determine each other for a Teichmüller curve generated by an
Abelian differential in Ω Mg(m1, . . . ,mk):

s =
12c

L
= 12− 12κ

L
,

where κ = 1
12

∑k
i=1

mi(mi+2)
m1+1 , see [9] and [6]. Let C denote the closure of a Teichmüller

curve C in the compactified moduli space of curves Mg. We want to construct a divisor D
in Mg such that D is disjoint with C for all Teichmüller curves C in a given stratum. In the
case of Abelian differentials,C does not intersect higher boundary divisors δi in Mg for i > 0.
Then we can compute the slope as well as the sum of Lyapunov exponents directly from the
equality C ·D = 0.

For quadratic differentials, the hyperelliptic strata were proved to be non-varying by [9],
see Corollary 2.1 for more details. Here as our second main result, we prove that many non-
hyperelliptic strata of quadratic differentials in low genus are non-varying.

T 1.3. – Consider the strata of quadratic differentials in low genus.
(1) In genus one, the strata Q(n,−1n) and Q(n − 1, 1,−1n) are non-varying for n ≥ 2

(Theorem 8.1).
(2) In genus two, there are 12 non-varying strata among all strata of dimension up to seven

(Theorem 9.1).
(3) In genus three, there are 19 non-varying strata among all non-exceptional strata of

dimension up to eight (Theorem 10.1) and 6 non-varying strata among all exceptional strata
(Theorem 6.2).

(4) In genus four, there are 8 non-varying strata among all non-exceptional strata of dimen-
sion up to nine (Theorem 11.1) and 7 non-varying strata among all exceptional strata (Theo-
rem 7.2).
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Let us explain the upshot in proving Theorem 1.3 as well as the difference from the
case of Abelian differentials. For Teichmüller curves generated by quadratic differentials
in Q(d1, . . . , dn), we have a similar relation between the Siegel-Veech area constant c, the
sum of (involution-invariant) Lyapunov exponents L+ and the slope s:

s =
12c

L+
= 12− 12κ

L+
,

where κ = 1
24

∑n
j=1

dj(dj+4)
dj+2 , see Propositions 4.1 and 4.2. By using a divisor disjoint from

a Teichmüller curve C, one would naturally expect to read off the value of L+(C) from the
divisor class. However, in the case of quadratic differentials, Teichmüller curves may intersect
higher boundary divisors, because a core curve of a cylinder may disconnect the associated
flat surface for quadratic differentials, whereas this is impossible for Abelian differentials, see
Remark 4.7. Thus, for a divisor D in Mg with class

D = aλ+ bδ0 +
∑

ciδi,

even if C ·D = 0, we cannot directly deduce the slope s = (C · δ)/(C · λ), where δ =
∑
δi is

the total boundary. Therefore, for a claimed non-varying stratum of quadratic differentials,
it requires a considerable amount of work using both algebraic geometry and flat geometry
to study the intersection of C with higher boundary divisors δi occurring in the divisor class
of D.

Moreover, for a number of non-varying strata we are only able to construct a disjoint divi-
sor in the moduli space of pointed curves Mg,n, hence we lift a Teichmüller curve C to Mg,n

by marking n zeros or poles of its generating differential. Besides λ and the boundary classes,
a divisor class in Mg,n may also contain the first Chern class ωi of the relative dualizing line
bundle associated to the ith marked point. Consequently we have to understand the inter-
section C · ωi. This calculation is carried out in Proposition 4.2.

Among the non-varying strata in Theorem 1.3, there are three of them for which our
standard method does not work. In other words, we are not able to find divisors disjoint with
all Teichmüller curves in these three strata. Instead, we adapt the idea of [25] by using certain
filtration of the Hodge bundle, which is treated in Appendix A.

Finally in genus five, we show that even the stratum with a unique zero is varying (Ap-
pendix C). Therefore, it seems quite plausible that our list of non-varying strata (including
the known hyperelliptic strata by [9]) is complete. Nevertheless, for a varying stratum it would
still be interesting to figure out the value distribution for the sums of Lyapunov exponents
for all Teichmüller curves contained in the stratum.

This paper is organized as follows. In Section 2 we provide the background on strata of
Abelian and quadratic differentials. A result of independent interest shows that near certain
boundary strata of the moduli space the period and plumbing parameters are coordinates of
strata of quadratic differentials.

In Section 3 we recall the Picard group of moduli spaces and various divisor classes.
Section 4 discusses properties of Teichmüller curves generated by quadratic differentials near
the boundary of the moduli space.

In order to prove disjointness of Teichmüller curves with various divisors in genus three
and four along the hyperelliptic locus and the Gieseker-Petri locus, the use of the canonical
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