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RECONSTRUCTING A VARIETY FROM ITS TOPOLOGY
[after Kollar, building on earlier work of Lieblich and Olsson]

by Kestutis Cesnaviéius

INTRODUCTION

The underlying Zariski topological space | X | of an algebraic variety or, more gener-
ally, a scheme X tends to have few open subsets in comparison to topologies that un-
derlie structures appearing in differential geometry or geometric topology. Thus, intu-
itively, | X | is a weak invariant of X, and this intuition is confirmed by low-dimensional
examples: for an algebraic curve C, the proper closed subsets of |C| are the finite sub-
sets of closed points, so |C| does not see much beyond the cardinality of the algebraic
closure of the base field. A more surprising example was constructed by WIEGAND
and KRAUTER (1981, Cor. 1): for primes p and p’, there is a homeomorphism

P2 | ~ P2 |.
Fy Fy

Topological spaces that underlie schemes (resp., affine schemes) were, in fact, com-
pletely classified by HOCHSTER (1969, Thm. 9): they are the locally spectral (resp., the
spectral) topological spaces. We recall that a topological space T is spectral if

— it is quasi-compact and quasi-separated;
— itis sober: each irreducible closed T’ C T is the closure {t} of a unique t € T;
— the quasi-compact open subsets form a base of the topology of T

A topological space T is locally spectral if it has an open cover by spectral spaces.
The topological space | X | of a quasi-compact and quasi-separated scheme X is spectral,
so Hochster’s result implies that, somewhat surprisingly, | X| also underlies some
affine scheme. For instance, for any field k and any n > 0, the topological space |P} |
also underlies an affine scheme (which, of course, need not be a variety over a field).

Due to the above, the recent result of KOLLAR (2020), which is the focus of this report,
came as a surprise: a projective, irreducible, normal variety X over C of dimension > 4
is uniquely determined by its topological space | X |, see Theorem 1.1 below. A resulting
general expectation in this direction is captured by the following conjecture of Kolldr.
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Conjecture 0.1 (KOLLAR, 2020, Conjecture 3). — For seminormal, geometrically irreducible
varieties X and X’ over fields k and k', respectively, with char k = 0 and dim X > 2, every
homeomorphism | X | = | X’| underlies a scheme isomorphism X = X'.

1. RECONSTRUCTION OF PROJECTIVE VARIETIES

The following result of Kollar builds on previous work of Lieblich and Olsson
and fully resolves Conjecture 0.1 for projective, normal varieties of dimension > 4 in
characteristic 0. In fact, it forms the foundation of credibility for a conjecture of this
sort.

Theorem 1.1 (KOLLAR, 2020, Theorem 2). — For normal, geometrically integral, projective
varieties X and X' over fields k and k', respectively, such that either

1) dim X > 4 and both k and k' are of characteristic 0; or
2) dim X > 3 and both k and k' are finitely generated field extensions of Q;

every homeomorphism | X | = | X'| underlies a scheme isomorphism X = X',

Remark1.2. Since X and X’ are proper and geometrically integral, we have isomor-
phisms I'(X, Ox) = k and I'(X’, Ox) = k’, so a scheme isomorphism X = X’ amounts
to a field isomorphism ¢ : k = k’ and an isomorphism of varieties X ®, , k" = X’.

We will focus on case 1) because it already contains most of the main ideas while
avoiding further technicalities of 2) that largely concern the Hilbert irreducibility
theorem. Roughly, the proof is based on studying Weil divisors D on a normal X:
such D are determined by | X| alone because they may be viewed as formal Z-linear
combinations of the points of codimension 1 (for instance, a reduced effective divisor
D c X is the closure of a finite set of codimension 1 points in X). We will let

Div(X) =P, cxn Z and Eff(X):=P, yv Zs0
denote the group of all divisors (resp., the monoid of all effective divisors) on X.

It is not clear if notions such as ampleness or linear equivalence of divisors are
determined by | X| alone, and the crux of the argument is in exhibiting hypotheses
under which they are. The ability to topologically recognize linear equivalence even-
tually reduces the reconstruction problem to a combinatorial recognition theorem
for projective spaces in terms of incidence of their lines and points (von Staudt’s
fundamental theorem of projective geometry).

A divisor D on X is ample if some multiple nD with n > 0 is a Cartier divisor
whose associated line bundle 6(nD) is ample. We let ~ denote linear equivalence of
divisors and say that divisors D; and D2 on X are linearly similar, denoted by Dy ~¢ Do,
if n1 D1 ~ naD4 for some nonzero integers 17 and ns. If this holds with 117 = ng, then
we say that D; and D, are Q-linearly equivalent, denoted by D1 ~g D2. When we
speak of reduced (resp., irreducible) divisors, we implicitly assume that they are also
effective (resp., effective and reduced). With these definitions, the overall proof of
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Theorem 1.1 proceeds in the following stages, which successively reconstruct more
and more of the structure of X from the topological space | X|, and which will be
discussed individually in the indicated sections:
§
|X| A (1X|, ~s of irreducible ample divisors)

58385
~~~s (| X1, ~ of effective divisors)

§6
s X

The last step, namely, the determination of a normal, geometrically integral, projective
variety X of dimension > 2 over an infinite field from its underlying topological
space | X | equipped with the relation of linear equivalence between effective divisors
on | X| is due to LieBLIcH and OLsSON (2019).

The initial results of LiebLicH and OLssON (2019), although already sufficient for
Theorem 1.1 above, have been sharpened and expanded in KOLLAR, LiEBLICH, OLSSON,
and SAWIN (2020).

2. RECOVERING LINEAR SIMILARITY OF AMPLE DIVISORS

NortATION. In this section, we let X be a normal, geometrically integral, projective variety
over a field k of characteristic 0.

The first stage of the proof of Theorem 1.1 is the reconstruction of linear similarity
of irreducible ample divisors from the topological space | X| alone. This requires,
in particular, to be able to topologically recognize ampleness of irreducible divisors,
which rests crucially on the following Lefschetz type theorem for the divisor class

group.
Lemma 2.1(RAVINDRA and SRINIVAS, 2006, Theorem 1). — Suppose that dim X > 3 and
let & be an ample line bundle on X whose linear system I'(X, &) is basepoint free. For some

nonempty Zariski open U C I'(X, &) and every effective divisor D C X that corresponds to a
k-point in U, the following restriction map is injective:

CI(X) —> CI(D).

The cited result is sharper but only applies to the base change X} to an algebraic
closure k. This suffices because Cl(X) — CI(Xf): to see this last injectivity, note that
for any divisor H on X that represents a class in the kernel, both 6(H) and 6(-H)
have nonzero global sections, which, since X is projective, means that H ~ 0.

For proving Theorem 1.1 for varieties of dimension < 4, one needs a refinement of
Lemma 2.1 in which X is a surface (and D is a curve). This requires arithmetic inputs,
notably a theorem of NERON (1952) on specialization of Picard groups. We refer to
KOLLAR (2020, Thm. 74) for this refinement of Lemma 2.1. It would also be interesting to
extend Lemma 2.1 to positive characteristic because this may be useful for establishing
further cases of Conjecture o0.1. For instance, we could then weaken the assumption

on k in this section: we could let it be a field that is not a subfield of any Fp.
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The following is the promised topological criterion for ampleness.

Proposition 2.2 (KOLLAR, 2020, Lemma 67). — Suppose that dim X > 2. An irreducible
divisor H C X is ample if and only if for every effective divisor D C X and distinct closed
points x,x" € X \ D, there is an effective divisor H' C X with

[HND|=|H'NnD| and x € H but x’' ¢ H'.

Sketch of proof. — To begin with the simpler direction, we assume that H is ample,
replace it by a multiple to assume that H is Cartier with associated very ample line
bundle #, and fixa D and x, x’ € X \ D. By EGAIII,, 2.2.4, for some n > 0 there is an
s € I'(X, Z®") that vanishes at x, does not vanish at x’, and is such that the vanishing
locus of s|p is H N D. We can take H' to be the vanishing locus of s.

For the converse, we make a simplifying assumption that dim X > 3 (for dim X =
2 one needs a refinement of Lemma 2.1). To argue that H is ample, we will use
Kleiman'’s criterion (KLEIMAN, 1966, Chap. III, Thm. 1 (i) © (iv) on p. 317), according
to which it suffices to show that for all distinct closed points x, x” € X, there exist
an integer n > 0 and an effective divisor H such that H ~ nH and x € H but x’ ¢ H
(this will simultaneously prove that some nH is basepoint free, so is also Cartier,
as we require of ample divisors). Since X is projective, Lemma 2.1 and the Bertini
theorem applied to the irreducible components of Hg supply a normal effective divisor
D c X not containing x, x’, or any generic point of H such that H N D is irreducible
and Cl(X) — CI(D). By applying the assumption to this D, we find an effective
divisor H ¢ X with |[HND| = |[H'nD|and x € H butx’ ¢ H’. Since H N D
is irreducible, this equality of topological spaces means that nH|, ~ n'H’|p for
some n,n’ > 0. The injectivity of C1(X) < Cl(D) then implies that nH ~ n’H’, and
it remains to set H := n’H’. m]

Proposition 2.2 allows us to topologically recognize irreducible ample divisors
on X. Granted this, the following proposition then expresses the linear similarity
relation ~¢ between such divisors purely in terms of the topological space | X]|.

Proposition 2.3 (KOLLAR, 2020, Lemma 68). — Suppose that dim X > 3. Irreducible
divisors Hy,Hy € X with Hy ample are linearly similar if and only if for any disjoint,
irreducible, closed subsets Z1, Zo C X of dimension > 1 there is an irreducible divisor H € X
with
|[HiNZy|=|H' NZy| and |HyNZs|=|H NZs].

Sketch of proof. — To begin with the simpler direction, we assume that n;Hy ~ n2Hs
for some nonzero 11, ny and fix Z1, Z- as in the statement. The 7n; must have the same
sign: otherwise 6(mH;) and 6(-mH;) would have nonzero global sections for every
large, sufficiently divisible m > 0. Thus, we may assume that 11, 12 > 0. After replac-
ing n1 and ng by nny and nng for alarge n > 0, we then combine EGAII1,, 2.2.4 and the
Bertini theorem (JouanoLou, 1983, 6.10) to find a global section of 6(n1H1) ~ 6(n2Ha)
whose vanishing locus is an irreducible ample divisor H’ with the desired properties
(and even such that the intersection of H; with every irreducible component of X}
is irreducible).
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For the converse, we make a simplifying assumption that dim X > 5 (to improve
to dim X > 3 one again needs a refinement of Lemma 2.1)—this time the assumption
is more serious because the dim X > 5 case does not suffice for Theorem 1.1. Letting
H;, Hs beirreducible ample divisors as in the statement, we iteratively apply Lemma 2.1
(with the Bertini theorem) to build disjoint, irreducible, normal closed subschemes
Z1,Zy C X that are complete intersections of dimension 2 such that Hy NZ; C Z; and
Hy N Zy C Zy are irreducible divisors and the following restriction maps are injective:

Cl(X) = Cl(Z1) and Cl(X) < Cl(Zs).

Since the intersections H; N Z; and Hy N Z4 are irreducible, these injections and the
displayed equalities involving H’ ensure that n1H; ~ n|H’ and naHy ~ n,H’ for
some 1,1 > 0. It then follows that n;n,Hy ~ n{na2Hs, so that H; and H are linearly
similar, as desired. O

Propositions 2.2 and 2.3 jointly carry out the first reconstruction step promised
in §1:
§ |X| ~~ (|X], ~s of irreducible ample divisors).

They also topologically determine complete intersection subvarieties as follows.

Corollary2.4. — Suppose that dim X > 3and let H C X be an irreducible ample divisor. The
topological space | X | alone determines the collection of those closed subsets Z C | X| that are
set-theoretic complete H-intersections, i.e., for which there are irreducible divisors H; ~; H
fori=1,...,rwithr = codim(Z, X) such that

Z=|HiNn...nH|.

Proof. — Propositions 2.2 and 2.3 imply that | X | alone determines the property of H
being ample, as well as the linear similarity relation H; ~¢ H. a

We will call such a closed subscheme HiN- - -NH, C X a complete H-intersection. The
requirement that the H; be irreducible and only linearly similar (as opposed to linearly
equivalent) to H makes this definition slightly nonstandard, but it is convenient because
Propositions 2.2 and 2.3 only concern irreducible divisors. Any positive-dimensional
complete H-intersection Hy N ... N H, is automatically geometrically connected by
the Lefschetz hyperplane theorem (SGA 2pew, XII, 3.5), and the same then also holds
for set-theoretic complete H-intersections.

3. RECOVERING Q-LINEAR EQUIVALENCE OF AMPLE DIVISORS

NortaTION. In this section, we let X be a normal, geometrically integral, projective variety
over field k of characteristic 0 and let H C X be an irreducible ample divisor.

To prepare for topological recognition of linear equivalence of divisors, for now
we continue to restrict to irreducible ample divisors and show how to recognize Q-
linear equivalence between them. This refines the result presented in the previous
section because Q-linear equivalence ~q is a finer relation than linear similarity ~s.
In addition, it involves techniques that will also be relevant later, such as topological
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