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CONVERGENCE OF PERCOLATION ON UNIFORM
QUADRANGULATIONS WITH BOUNDARY TO SLE6

ON
√

8/3-LIOUVILLE QUANTUM GRAVITY

by

Ewain Gwynne & Jason Miller

Abstract. — Let Q be a free Boltzmann quadrangulation with simple boundary deco-
rated by a critical (p = 3/4) face percolation configuration. We prove that the chordal
percolation exploration path on Q between two marked boundary edges converges in
the scaling limit to chordal SLE6 on an independent

√
8/3-Liouville quantum gravity

disk (equivalently, a Brownian disk). The topology of convergence is the Gromov-
Hausdorff-Prokhorov-uniform topology, the natural analog of the Gromov-Hausdorff
topology for curve-decorated metric measure spaces. We also obtain analogous scaling
limit results for face percolation on the uniform infinite half-plane quadrangulation
with simple boundary, and for site percolation on a uniform triangulation with simple
boundary. Our method of proof is robust and, up to certain technical steps, extends
to any percolation model on a random planar map which can be explored via peeling.

Résumé (Convergence de la percolation sur des quadrangulations uniformes avec bord vers
le SLE6 sur la gravité quantique de Liouville de paramètre

√
8/3)

Soit une quadrangulation de Boltzmann avec bord simple décorée par une
percolation critique (p = 3/4) sur ses faces. Nous montrons que le processus
d’exploration de cette percolation entre deux arêtes marquées du bord converge
dans la limite d’échelle vers un processus SLE6 chordal dessiné sur un disque
quantique au sens de la gravité quantique de Liouville de paramètre

√
8/3 (i.e., un

disque Brownien). La topologie considérée ici est la topologie de Gromov-Hausdorff-
Prokhorov uniforme, qui est l’analogue de la topologie de Gromov-Hausdorff pour
l’étude des espaces métriques mesurés décorés par une courbe. Nous obtenons
également des résultats similaires pour la percolation critique sur les faces de
quadrangulations uniformes infinies du demi-plan, ainsi que pour la percolation
critique par sites sur une triangulation uniforme avec bord. La méthode de preuve
est robuste et, modulo quelques ajustements techniques, s’étend essentiellement à
tous les modèles de percolation sur les cartes planaires qui peuvent être explorés par
épluchage.
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1. Introduction

1.1. Overview. — In the past several decades, a vast literature concerning statistical
mechanics models in two dimensions has been developed. This work includes mod-
els on on deterministic lattices (such as Z2) as well as on random planar maps, i.e.,
random graphs embedded in the plane, viewed modulo orientation-preserving home-
omorphisms. A central focus in this field is to show that these statistical mechanics
models converge, under an appropriate scaling limit, to continuum models.

In the case of critical models on deterministic lattices, the limiting objects are often
described (or conjectured to be described) in terms of Schramm-Loewner evolution
(SLE) [69], a one-parameter family of random fractal curves; see, e.g., [51, 76, 77, 70].
SLE has been conjectured to arise in this context because in his original derivation
[69] Schramm showed that it is characterized by the fact that it is conformally in-
variant and satisfies a spatial Markov property called the domain Markov property ;
these two properties together are sometimes referred to as the conformal Markov
property. Many discrete models in two dimensions satisfy an exact spatial Markov
property and are conjectured to be conformally invariant in the limit and therefore
be SLEs. For critical models on random planar maps, one instead gets SLE curves
in a random geometry which arises as the scaling limit of the underlying random
planar map. This random geometry can be described in terms of Liouville quantum
gravity (LQG), a one-parameter family of random fractal surfaces. LQG surfaces with
parameter γ =

√
8/3 are especially important since such surfaces describe the scal-

ing limits of uniform random planar maps, i.e., planar maps where each possibility
is assigned equal probability. Certain special

√
8/3-LQG surfaces are equivalent, as

metric measure spaces, to Brownian surfaces, such as the Brownian map [53, 57] or
the Brownian disk [13].

The goal of this article is to show that a certain statistical mechanics model—
namely, critical percolation—on certain types of random planar maps converges to
SLE6 on a

√
8/3-LQG surface, or equivalently a Brownian surface. The topology of

convergence is the so-called Gromov-Hausdorff-Prokhorov uniform topology, the nat-
ural analog of the Gromov-Hausdorff topology for curve-decorated metric measure
spaces. We will provide more background about our result and the relevant mathe-
matical objects shortly, but before we do so let us first comment briefly on our proof
strategy.

The proof of our main scaling limit result has three main steps.

1. Show that percolation on a random planar map is tight with respect to the above
topology.

2. Show that the desired limiting object—namely SLE6 on a
√

8/3-LQG surface—is
uniquely characterized by a certain set of properties (essentially, the topology of
the curve plus a “LQG” variant of the domain Markov property).

3. Show that every possible subsequential limit of our discrete objects satisfies the
properties in this characterization theorem.

ASTÉRISQUE 429



PERCOLATION ON UNIFORM QUADRANGULATIONS 3

This proof outline is quite different from known scaling limit proofs for models on
deterministic lattices toward SLE, which typically show directly that the Loewner
driving function of the discrete curve converges to a multiple of Brownian motion
(as opposed to using Schramm’s conformal Markov characterization of SLE). Our
argument is also very different from the proof of the convergence of self-avoiding walk
on random planar maps to SLE8/3 on

√
8/3-LQG, with respect to the same topology

we consider here, from [37].
In this paper, we will carry out steps 1 and 3, which both involve purely discrete

(random planar map) arguments. Step 2 is carried out in the companion paper [38],
using purely continuum (SLE/LQG) arguments which are of quite a different flavor
and make use of a different mathematical toolbox in comparison to this paper. We
review all of the SLE/LQG results which are needed for the proofs of our main
results, including the characterization theorem from [38], in Section 2.3 below. We
note that in the course of proving this characterization theorem, [38] also establishes
characterizations for other variants of SLEκ curves on γ-LQG surfaces for γ ∈ (

√
2, 2)

and κ = 16/γ2 ∈ (4, 8), which may have applications to proving other scaling limit
results for statistical mechanics models in random geometries.

1.1.1. Percolation. — Let G be a graph and p ∈ [0, 1]. Recall that site (resp. bond)
percolation on G with parameter p ∈ [0, 1] is the model in which each vertex (resp.
edge) of G is declared to be open independently with probability p. A vertex (resp.
edge) which is not open is called closed. If G is a planar map (i.e., a graph together
with an embedding into the plane so that no two edges cross), one can also consider
face percolation, equivalently site percolation on the dual map, whereby each face is
open with probability p and closed with probability 1 − p. We refer to [30, 15] for
general background on percolation.

Suppose now that G is an infinite graph with a marked vertex v. The first question
that one is led to ask about percolation on G, which was posed in [17], is whether there
exists an infinite open cluster containing v, i.e., a connected set of open vertices, edges,
or faces (depending on the choice of model). For p ∈ [0, 1], let ϕ(p) be the probability
that there is such an open cluster containing v and let pc = sup{p ∈ [0, 1] : ϕ(p) = 0}
be the critical probability above (resp. below) which there is a positive (resp. zero)
chance there is an infinite open cluster containing v. The value of pc is in general
challenging to determine, but has been identified in some special cases. For example,
it is known that pc = 1/2 for both bond percolation on Z2 and for site percolation on
the triangular lattice [48]. As we will explain below, pc has also been identified for a
number of random planar map models.

The next natural question that one is led to ask is whether the percolation con-
figuration at criticality (p = pc) possesses a scaling limit, and this is the question in
which we will be interested in the present work. For percolation on a two-dimensional
lattice when p = pc, the interfaces between open and closed clusters are expected to
converge in the scaling limit to Schramm-Loewner evolution (SLE)-type curves [69]
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with parameter κ = 6. The reason for this is that the scaling limits of these percola-
tion interfaces are conjectured to be conformally invariant (attributed to Aizenman
by Langlands, Pouliot, and Saint-Aubin in [49]) with crossing probabilities which sat-
isfy Cardy’s formula [21]. The particular value κ = 6 is obtained since this is the only
value for which SLE possesses the locality property [50], which is a continuum analog
of the statement that the behavior of a percolation interface is not affected by the
percolation configuration outside of a sub-graph of the underlying lattice until it exits
that sub-graph. This conjecture has been proven in the special case of site percolation
on the triangular lattice by Smirnov [76]; see [18] for a detailed proof of the scaling
limit result and [43] for a proof of convergence in the so-called natural parameteriza-
tion. The proof of [76] relies crucially on the combinatorics of site percolation on the
triangular lattice and does not generalize to other percolation models.

In this paper we will prove scaling limit results for percolation on random planar
maps and identify the limit with SLE6 on

√
8/3-Liouville quantum gravity, equiva-

lently, SLE6 on a Brownian surface. Statistical mechanics models on random planar
maps and deterministic lattices are both of fundamental importance in mathematical
physics. Indeed, both are well-motivated in the physics literature and both possess
a rich mathematical structure. Many questions (e.g., scaling limit results for random
curves toward SLE) can be asked for both random planar maps and deterministic
lattices, and it is not in general clear which setting is easier. There are scaling limit
results which have been proven for models on deterministic lattices but not random
planar maps (e.g., the convergence of Ising model interfaces to SLE3 [77] or, prior to
this paper, the convergence of percolation to SLE6) or for random planar maps but
not deterministic lattices (e.g., the convergence of self-avoiding walk to SLE8/3 [37]
or peanosphere scaling limit results [25, 75, 47, 32]).

We will focus on the particular model of face percolation on a random quadran-
gulation. (We will discuss the universality of the scaling limit in Section 8 in detail
in the setting of site percolation on triangulations.) Critical probabilities for several
percolation models on random planar maps are computed in [4], building on ideas of
[2, 3]; in particular, pc = 3/4 for face percolation on random quadrangulations. The
fact that pc = 3/4 and not 1/2 is related to the asymmetry between open and closed
faces: open faces are considered adjacent if they share an edge, whereas closed faces
are considered adjacent if they share a vertex. See [68, 56] for the computation of pc

for other planar map models.
One useful feature of percolation on random planar maps is the so-called peeling

procedure which allows one to describe the conditional law of the remaining map when
we explore a single face. For face percolation with open/closed boundary conditions,
the peeling process gives rise to a natural path from the root edge to the target
edge which we call the percolation exploration path (see Section 1.2.2 for a precise
definition of this path). The peeling exploration path is closely related to, but not in
general identical to, the percolation interface from the root edge to the target edge;
see Section 3.4 for further discussion of this relationship. In the special case of site

ASTÉRISQUE 429



PERCOLATION ON UNIFORM QUADRANGULATIONS 5

percolation on a triangulation the percolation exploration path is the same as the
percolation interface.

1.1.2. Limiting object: SLE6 on
√

8/3-Liouville quantum gravity. — For γ ∈ (0, 2), a
γ-Liouville quantum gravity (LQG) surface is (formally) the random surface parame-
terized by a domain D ⊂ C whose Riemannian metric tensor is eγh(z) dx⊗ dy, where
h is some variant of the Gaussian free field (GFF) on D and dx⊗ dy is the Euclidean
metric tensor. This does not make rigorous sense since h is a distribution, not a func-
tion. However, it was shown in [26] that one can make rigorous sense of the volume
form associated with a γ-LQG surface, i.e., one can define a random measure µh on D

which is a limit of regularized versions of eγh(z) dz where dz is the Euclidean volume
form (see [67] and the references therein for a more general approach to constructing
measures of this form). Hence a γ-LQG surface can be viewed as a random measure
space together with a conformal structure.

In the special case when γ =
√

8/3, it is shown in [62, 65, 64], building on [59, 63, 61],
that (D,h) can also be viewed as a random metric space, i.e., one can construct a met-
ric dh on D which is interpreted as the distance function associated with eγh(z) dx⊗dy.
For certain special

√
8/3-LQG surfaces introduced in [25, 74], the metric measure

space structure of a
√

8/3-LQG surface is equivalent to a corresponding Brownian
surface. In particular, the Brownian map, the scaling limit of the uniform quadrangu-
lation of the sphere [53, 57], is equivalent to the quantum sphere. Also, the Brownian
half-plane, the scaling limit of the uniform quadrangulation of the upper-half plane H
in the Gromov-Hausdorff topology [33, 6], is equivalent to the

√
8/3-quantum wedge.

Finally, the Brownian disk, the scaling limit of the uniform quadrangulation of the
disk D [13], is equivalent to the quantum disk.

The metric measure space structure of a
√

8/3-LQG surface a.s. determines the
conformal structure [64], so we have a canonical way of embedding a Brownian sur-
face into C. This enables us to define an independent SLE6 on the Brownian map,
half-plane, and disk as a curve-decorated metric measure space by first embedding the
Brownian surface into C to get a

√
8/3-LQG surface and then sampling an indepen-

dent SLE6 connecting two marked points. The canonical choice of parameterization is
the so-called quantum natural time with respect to this

√
8/3-LQG surface, a notion

of time which is intrinsic to the curve decorated quantum surface [25]. See Section 2.3
for more on

√
8/3-LQG surfaces and their relationship to SLE6 and to Brownian

surfaces.
In the companion paper [38], we prove a characterization of SLE6 on a Brownian

surface by a set of simple properties, which is re-stated as Theorem 2.7. This charac-
terization is in some ways similar to Schramm’s [69] characterization of SLE in terms
of conformal Markov property, in that it involves a continuum analog of the Markov
property for percolation interfaces on a random planar map. However, the properties
in our characterization theorem are different than those in Schramm’s characteriza-
tion, and the proof is extremely different. As discussed above, this characterization
plays a fundamental role in the proof of our main results.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2021


