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Abstract. — In this paper we construct an explicit representative for the Grothendieck
fundamental class [Z] ∈ Extr( OZ , Ωr

X) of a complex submanifold Z of a complex
manifold X when Z is the zero locus of a real analytic section of a holomorphic
vector bundle E of rank r on X. To this data we associate a super-connection A
on

∧∗
E∨, which gives a “twisted resolution” T ∗ of OZ such that the “generalized

super-trace” of 1
r!

A2r, which is a map of complexes from T ∗ to the Dolbeault complex
Ar,∗

X , represents [Z]. One may then read off the Gauss-Bonnet formula from this map
of complexes.

Résumé (Une démonstration explicite de la formule de Gauss-Bonnet généralisée)
Dans cet article nous construisons un représentant explicite de la classe fonda-

mentale de Grothendieck [Z] ∈ Extr( OZ , Ωr
X) d’une sous-variété Z dans une variété

lisse complexe X quand Z est le lieu des zéros d’une section réelle analytique d’un
fibré vectoriel holomorphe E de rang r sur X. Nous associons à cette donnée une
super-connection A sur

∧∗
E∨, qui fournit une « résolution tordue » T ∗ de OZ telle

que la « super-trace généralisée » de 1
r!

A2r, qui est un morphisme de complexes de
T ∗ vers le complexe de Dolbeault Ar,∗

X , représente [Z]. On peut alors lire la formule
de Gauss-Bonnet à partir de cette application entre complexes.

Introduction

If X is a complex manifold, and τ is a holomorphic section, transverse to the zero
section, of the dual E∨ of a rank r holomorphic vector bundle, it is well known that
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the fundamental class of the locus Z of zeros of τ is equal to the top Chern class of
the bundle E∨:

[Z] = cr(E
∨) = (−1)rcr(E)

For Hodge cohomology, this is the fact that the image of the Grothendieck fundamen-
tal class

[Z] ∈ Extr( OZ ,ΩrX)

under the map
Extr( OZ ,ΩrX)→ Extr( OX ,ΩrX) = Hr(X,ΩrX)

coincides with the top Chern class of E∨. Proofs of this result tend to be indirect, i.e.
they depend on the axioms for cycle classes and Chern classes, and comparison with
“standard” cases.

However, one may observe that the section τ gives rise to an explicit global Koszul
resolution

K∗(τ) = (
∧
∗E∨, ιτ )→ OZ ,

and so the theorem can be rephrased as saying that image of [Z] under the map:

Extr(K∗(τ),ΩrX)→ Extr( OX ,ΩrX)

induced by the isomorphism OX ' K0(τ), is the top Chern class of E∨. Our first
result is to show that a choice of connection ‹∇ on E, determines, via Chern-Weil
theory applied to superconnections, an explicit map of complexes from the Koszul
complex K∗(τ) to the Dolbeault complex of ΩrX , which represents the Grothendieck
fundamental class and the restriction of which to the degree zero component OX of
the Koszul complex is precisely multiplication by the r-th Chern form of E∨.

One motivation for the current paper was to obtain a better understanding of the
proof by Toledo and Tong of the Hirzebruch-Riemann-Roch theorem in [12]. In that
paper the authors used local Koszul resolutions of the structure sheaf of the diagonal
∆X ⊂ X×X to construct the Grothendieck fundamental class [∆X ], and then to com-
pute χ(X, OX) as the degree of the restriction of the appropriate Kunneth-component
of [∆X ] to the diagonal. For such a computation one needs only the existence of a
“nice” representative of the Grothendieck fundamental class in some neighborhood of
the diagonal. However the diagonal ∆X is not in general the zero set of a holomorphic
section of a vector bundle. Instead one can use the “holomorphic exponential map”
(see the article [10] for an exposition) to construct, in a neighborhood of the diago-
nal, a real analytic section of p∗(TX), which vanishes exactly on the diagonal. (Here
p : X ×X → X is the projection onto the first factor.) Thus we are led to consider
what happens if we ask only that τ be real analytic rather than holomorphic. In our
second main result, we use the theory of superconnections and twisted complexes in
the style of Brown [5], and of Toledo and Tong (op. cit.) to construct a map from the
Dolbeault resolution of K∗(τ) to that of ΩrX representing the Grothendieck funda-
mental class and which restricts to the r-th Chern form of E∨. An important tool in
this construction is a non-commutative version of the supertrace for endomorphisms
of Grassman algebras.
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We should also remark that instead of working in the real analytic category, one
can make a very similar argument in the algebraic category, using formal schemes.

Let us now give a more detailed outline of the paper. Recall that the section τ gives
rise to a natural Koszul resolution K(τ)∗ → OZ , in which K(τ)−j =

∧j E. Here E is
the sheaf of holomorphic sections of E. Choose a connection ∇ : AX ⊗ E→ A1,0

X ⊗ E
of type (1, 0) (A1,0

X being the sheaf of real analytic (1, 0)-forms on X) on E, such that
∇2 = 0. Let ‹∇ = ∇+ ∂ be the associated connection. We view ∇ as acting not only
on E, but on all tensor constructions on E. Then our first result is:

Theorem (A). — The connection ∇ and the section τ determine a map of complexes,
from the Koszul resolution K(τ)∗ of OZ , to the Dolbeault resolution Ar,∗X [r] of ΩrX [r]

ψ : K(τ)∗ → Ar,∗X [r]

the degree −r component of which is 1
r! (ı∇(τ))

r, and the degree 0 component K(τ)0 =

OX → Ar,∗X [r]0 = Ar,rX of which is represented by the r-th Chern form of (E∨,‹∇).
In general ψ is given by a linear algebra construction involving ∇ and the curvature
R = [∇, ∂]s of ‹∇, and we have:

– The class in ExtrOX ( OZ ,ΩrX) represented by ψ is the Grothendieck fundamental
class [Z].

– The image of [Z] in ExtrOX ( OX ,ΩrX) ' Hr,r(X,C), is represented by the degree
zero component of ψ, which is equal to the r-th Chern form cr(E

∨,‹∇)

It follows immediately that the image of [Z] in Hr,r(X,C) is equal to cr(E∨).

The proof of Theorem A is contained in Section 5. (cf. Theorem 5.5 and Corol-
lary 5.6).

In the second half of the paper, we extend Theorem A to the case where Z is the
zero locus of a real analytic section of E∨. It is no longer the case that τ determines a
Koszul resolution of OZ , but instead we get a resolution of A0,∗

X ⊗ OZ . In order to get
a complex that is quasi-isomorphic to OZ , we construct a resolution of the Dolbeault
resolution A0,∗

X ⊗ OZ of OZ , by constructing a twisted differential, δ, in the sense of
Toledo and Tong [13], on A0,∗

X ⊗
∧∗ E.

A key tool in extending Theorem A to this situation is the notion of the “gener-
alized supertrace” of an endomorphism of the exterior algebra of a finitely generated
projective module. Suppose that V is a (locally) free module of finite rank r over a
commutative ring k. Then the generalized supertrace is a map

TrΛ : Endk(
∧∗V )→

∧∗V ∨
(c.f. Definition 6.1). If A is a graded-commutative algebra over k, we can extend this
to a map

TrΛ : EndA(A“⊗∧∗V )→ A“⊗∧∗V ∨
Here “⊗ denotes the “super” or graded tensor product. If ϕ ∈ EndA(

∧∗ V ), then the
degree 0 component of TrΛ(ϕ) is the usual super-trace of ϕ. The key property of TrΛ

(which is proved in Section 3.) is:
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Proposition. — Assume that ϕ ∈ EndA(
∧∗ V ), and let δ ∈ EndA(

∧∗ V ) be an A-
linear superderivation. Then

TrΛ[δ, ϕ]s = [δ,TrΛ(ϕ)]s

Theorem (B). — Let Z be a complex submanifold of X such that there exists a holo-
morphic vector bundle π : E → X and τ ∈ Γ(X, AX ⊗ E∨) such that ıτ : AX ⊗ E →
AX ⊗ IZ is surjective. Then

– There is a superconnection δ of type (0,1), on the super-bundle
∧∗E, such that:

1. δ2 = 0, so δ defines a differential on A0,∗
X ⊗

∧∗ E,
2. the component of δ of degree −1 with respect to the grading on

∧∗E is
the Koszul differential ıτ ,

3. If we write δ for the induced differential on A0,∗
X ⊗

∧∗ E, then the map∧0 E = OX → OZ induces a quasi-isomorphism of complexes:

( A0,∗
X ⊗

∧∗ E, δ) ∼→ ( A0,∗
X ⊗ OZ , ∂)

∼← OZ

– Let RA be the curvature of the superconnection A = ∇ + δ on
∧∗E. Then the

generalized supertrace of 1
r!R

r
A defines a map of complexes

A0,∗
X ⊗

∧∗ E→ Ar,∗X [r],

which, via the quasi-isomorphisms in part 1), represents the Grothendieck fun-
damental class [Z],

– The image of [Z] in Hr,r(X,C) is represented by the degree 0 component of the
generalized supertrace of 1

r!R
r
A, i.e., by the super-trace of 1

r!R
r
A, which by Quillen

[11] is an (r, r)-form representing the Chern character chr(
∧∗E).

The proof of Theorem B is contained in Proposition 8.4, Theorem 10.3, and Corol-
lary 10.5. We would like to thank the referee for comments which let to a substantial
improvement in the organization of the paper.

1. Superobjects

Throughout this paper we will use the language of super -objects. We include here
basic definitions and properties for the convenience of the reader and to fix notation.
We omit the details and proofs, which may be found in [11] and [4].

Let k be a commutative ring with unity .

Definition 1.1. — A k-module V with a Z/2Z-grading is called a k-supermodule.

Remark 1.2. — In the same spirit, a Z/2Z-graded object in an additive category is
called a superobject . As realizations of this general definition, we will be dealing with
super algebras, super vector bundles on a smooth manifold, and sheaves of superal-
gebras on a topological space, etc.
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We will write V + and V − for the degree 0 (mod 2) and degree 1 (mod 2) parts of
V and we will call them the even and the odd parts of V respectively. Let ν ∈ V be
a homogeneous element. We say |ν| = 0 if ν ∈ V + and |ν| = 1 if ν ∈ V −.

Endk(V ) is also a k-supermodule with the grading

Endk(V )+ = Homk(V +, V +)⊕Homk(V −, V −)

Endk(V )− = Homk(V +, V −)⊕Homk(V −, V +)

Moreover, the algebra of endomorphisms Endk(V ) is a k-superalgebra with this grad-
ing. If no confusion is likely to arise, we will suppress the mention of the ring k from
now on.

Definition 1.3. — Let A be a superalgebra. The supercommutator of two elements of
A is

[a, b]s = ab− (−1)|a||b|ba

where a and b are homogeneous. The supercommutator is extended bilinearly to non-
homogeneous a and b.

If the supercommutator [ , ]s : A⊗A→ A is the zero map, then A is called a commu-
tative superalgebra. The exterior algebra of a free module M with the Z/2Z-grading∧+M =

⊕
p even

∧pM and
∧−M =

⊕
p odd

∧pM is a commutative superalgebra.
Let V be finitely generated and projective. Assume that 1

2 ∈ k. Giving a Z/2Z-
grading on V is equivalent to giving an involution ε ∈ Endk(V ), that is ε2 = I. The
even and the odd parts are the eigenspaces corresponding to the eigenvalues +1 and
−1 respectively. In the same fashion, the Z/2Z-grading on Endk(V ) can be given by
the involution

ρ(ϕ) = ε ◦ ϕ ◦ ε
where ϕ ∈ Endk(V ).

Definition 1.4. — Let ϕ ∈ Endk(V ). The supertrace of ϕ, denoted by trs(ϕ), is defined
to be

trs(ϕ) = tr(ε ◦ ϕ)

where ‘ tr’ is the usual trace map.

Lemma 1.5. — The supertrace vanishes on supercommutators.

Proof. — Cf. [11].

Let A and B be superalgebras. We define the super tensor product of A and B,
denoted by A“⊗B, to be the k-module A⊗B with the Z/2Z-grading

(A“⊗B)+ = (A+ ⊗B+)⊕ (A− ⊗B−)

(A“⊗B)− = (A+ ⊗B−)⊕ (A− ⊗B+)

and the algebra structure

(a1 ⊗ b1)(a2 ⊗ b2) = (−1)|b1||a2|a1a2 ⊗ b1b2
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