Astérisque **328**, 2009, p. 339–354

CM STABILITY AND THE GENERALIZED FUTAKI INVARIANT II

by

Sean Timothy Paul & Gang Tian

Dedicated to Jean-Michel Bismut on the occasion of his 60th birthday

Abstract. — The Mabuchi K-energy map is exhibited as a singular metric on the refined CM polarization of any equivariant family $\mathbf{X} \xrightarrow{p} S$. Consequently we show that the generalized Futaki invariant is the leading term in the asymptotics of the reduced K-energy of the generic fiber of the map p. Properness of the K-energy implies that the generalized Futaki invariant is strictly negative.

Résumé (CM-stabilité et invariant de Futaki généralisé II). — On interpréte la K-énergie de Mabuchi comme une métrique singulière sur la CM-polarisation raffinée d'une famille équivariante $\mathbf{X} \xrightarrow{p} S$. Nous montrons que l'invariant de Futaki généralisé est le terme principal de l'asymptotique de la K-énergie réduite de la fibre générique de l'application p. Si la K-énergie est propre, alors l'invariant de Futaki généralisé est strictement négatif.

1. Introduction

1.1. Statement of results. — Throughout this paper X and S denote smooth, proper complex projective varieties satisfying the following conditions.

- 1. $\mathbf{X} \subset S \times \mathbb{P}^N$; \mathbb{P}^N denotes the complex projective space of *lines* in \mathbb{C}^{N+1} .
- 2. $p := p_1 : \mathbf{X} \to S$ is flat of relative dimension n, degree d with Hilbert polynomial P.
- 3. $L|_{\mathbf{X}_z}$ is very ample and the embedding $\mathbf{X}_z := p_1^{-1}(z) \stackrel{L}{\hookrightarrow} \mathbb{P}^N$ is given by a complete linear system for $z \in S$.

²⁰¹⁰ Mathematics Subject Classification. — Primary: 53C55; Secondary: 14D06.

Key words and phrases. - Futaki Invariant, Stability, Mabuchi Energy, CM polarization.

Support in part by a National Science foundation Grant Support in part by a National Science foundation Grant.

4. There is an action of $G := SL(N + 1, \mathbb{C})$ on the data compatible with the projection and the standard action on \mathbb{P}^N .

It is well known that (1) and (3) imply that

(1.1)
$$\mathbb{P}(p_{1*}L) \cong S \times \mathbb{P}^N.$$

Which in turn is equivalent to the existence of a line bundle \mathscr{A} on S such that

(1.2)
$$p_{1*}L \cong \underbrace{\bigoplus \mathcal{O}}_{N+1}.$$

Below Chow(\mathbf{X}/S) denotes the Chow form of the family \mathbf{X}/S , μ is the coefficient of k^{n-1} in P(k), and \mathcal{M}_n is the coefficient of $\binom{m}{n}$ in the CGKM expansion of det $(p_{1*}L^{\otimes m})$ for m >> 0. A complete discussion of these notions is given in "*CM Stability and the Generalized Futaki Invariant I*". We refer the reader to that paper for the basic definitions and constructions that are used in the present article.

We define an invertible sheaf on S as follows.

Definition 1 (The Refined CM polarization⁽¹⁾). — We have

(1.3)
$$\mathbb{L}_1(\mathbf{X}/S) := \{ \operatorname{Chow}(\mathbf{X}/S) \otimes \mathscr{C}^{d(n+1)} \}^{n(n+1)+\mu} \otimes \mathscr{M}_n^{-2(n+1)}$$

With the family $p_1 : \mathbf{X} \to S$ fixed throughout, we will denote $\mathbb{L}_1(\mathbf{X}/S)$ by \mathbb{L}_1 in the remainder of the paper.

Our first result exhibits the Mabuchi energy as a singular Hermitian metric on \mathbb{L}_1 .

Theorem 1. — Let || || be any smooth Hermitian metric on \mathbb{L}_1^{-1} .⁽²⁾ Then there is a continuous function $\Psi_S : S \setminus \Delta \to (-\infty, c)$ such that for all $z \in S/\Delta$

(1.4)
$$d(n+1)\nu_{\omega|_{\mathbf{X}_z}}(\varphi_{\sigma}) = \log\left(e^{(n+1)\Psi_S(\sigma z)}\frac{||\;||^2(\sigma z)}{||\;||^2(z)}\right).$$

Here c denotes a constant which depends only on the choice of background Kähler metrics on S and X, Δ denotes the discriminant locus of the map p_1 , and $\omega|_{\mathbf{X}_z}$ denotes the restriction of the Fubini Study form of \mathbb{P}^N to the fiber \mathbf{X}_z .

Remark 1. — This should be compared with the main result in Section 8 of [17]. The principal contribution of our present work is the observation that the whole theory in Section 8 of [17] should be recast from the beginning with the sheaf \mathbb{L}_1 .

Let $X \hookrightarrow \mathbb{P}^N$ be an *n* dimensional projective variety with Hilbert polynomial *P*. Let $Hilb_m(X)$ denote the *mth* Hilbert point of *X* (see **[12]** for further information). If λ is a one parameter subgroup of *G* then it is known (see **[12]**) that the weight,

⁽¹⁾ We use this terminology in order to distinguish this sheaf from one introduced by the second author in ([17]).

⁽²⁾ \mathbb{L}_1^{-1} denotes the dual of \mathbb{L}_1 .

 $w_{\lambda}(m)$, of $Hilb_m(X)$ with respect to λ is a *polynomial* in m of degree at most n + 1. That is,

$$w_{\lambda}(m) = a_{n+1}(\lambda)m^{n+1} + a_n(\lambda)m^n + \cdots$$

Then the ratio may be expanded as follows.

$$\frac{w_{\lambda}(m)}{mP(m)} = F_0(\lambda) + F_1(\lambda)\frac{1}{m} + \dots + F_l(\lambda)\frac{1}{m^l} + \dots$$

Definition 2 (Donaldson ([5])). — $F_1(\lambda)$ is the generalized Futaki invariant of X with respect to λ .

In our previous paper we have shown the following.

Theorem (The weight of the Refined CM polarization). — i) There is a natural G linearization on the line bundle \mathbb{L}_1 .

ii) Let λ be a one parameter subgroup of G. Let $z \in \mathfrak{Hill}_{\mathbb{P}^N}^{P}(\mathbb{C})$. Let $w_{\lambda}(z)$ denote the weight of the restricted \mathbb{C}^* action (whose existence is asserted in i)) on $\mathbb{L}_1^{-1}|_{z_0}$ where $z_0 = \lambda(0)z$. Then

(1.5)
$$w_{\lambda}(z) = F_1(\lambda).$$

The main result of the paper is the following corollary of (1.4) and (1.5).

Corollary 1 (Algebraic asymptotics of the Mabuchi energy). — Let $\varphi_{\lambda(t)}$ be the Bergman potential associated to an algebraic 1psg λ of G, and let $z \in S \setminus \Delta$. Then there is an asymptotic expansion

(1.6)
$$d(n+1)\nu_{\omega|_{\mathbf{x}_{z}}}(\varphi_{\lambda(t)}) - \Psi_{S}(\lambda(t)) = F_{1}(\lambda)\log(|t|^{2}) + O(1) \text{ as } |t| \to 0.$$

Moreover $\Psi_S(\lambda(t)) = \psi(\lambda) \log(|t|^2) + O(1)$ where $\psi(\lambda) \in \mathbb{Q}_{\geq 0}$. Moreover, $\psi(\lambda) \in \mathbb{Q}_+$ if and only if $\lambda(0)\mathbf{X}_z = \mathbf{X}_{\lambda(0)z}$ (the limit cycle⁽³⁾ of \mathbf{X}_z under λ) has a component of multiplicity greater than one. Here O(1) denotes any quantity which is bounded as $|t| \to 0$.

Moser iteration and a refined Sobolev inequality (see [11] and [7]) yield the following.

Corollary 2. — If $\nu_{\omega|\mathbf{x}_z}$ is proper (bounded from below) then the generalized Futaki invariant of \mathbf{X}_z is strictly negative (nonnegative) for all $\lambda \in G$.

Remark 2. We call the left hand side of (1.6) the reduced K-Energy along λ . We also point out that while it is certainly the case that $F_1(\lambda)$ may be defined for any subscheme of \mathbb{P}^N it evidently only controls the behavior of the K-Energy when $\lambda(0)\mathbf{X}_z$ is reduced.

⁽³⁾ See [12] pg. 61.

Remark 3. — The precise constant d(n+1) in front of ν_{ω} is not really crucial, since what really matters is the sign of $F_1(\lambda) + \psi(\lambda)$. That $\Psi_S(\lambda(t))$ has logarithmic singularities can be deduced from [13].

Remark 4. — We emphasize that we do not assume the limit cycle is smooth.

2. Background and Motivation

Let (X, ω) be a compact Kähler manifold (ω not necessarily a Hodge class) and $P(X, \omega) := \{\varphi \in C^{\infty}(X) : \omega_{\varphi} := \omega + \frac{\sqrt{-1}}{2\pi} \partial \overline{\partial} \varphi > 0\}$ the space of Kähler potentials. This is the usual description of all Kähler metrics in the same class as ω (up to translations by constants). It is not an overstatement to say that the most basic problem in Kähler geometry is the following

Does there exist $\varphi \in P(X, \omega)$ such that $\operatorname{Scal}(\omega_{\varphi}) \equiv \mu$? (*)

This is a fully nonlinear *fourth order* elliptic partial differential equation for φ . μ is a constant, the average of the scalar curvature, it depends only on $c_1(X)$ and $[\omega]$. When $c_1(X) > 0$ and ω represents the *anticanonical* class a simple application of the Hodge Theory shows that (*) is equivalent to the *Monge-Ampere equation*.

$$\frac{\det(g_{i\overline{j}} + \varphi_{i\overline{j}})}{\det(g_{i\overline{j}})} = e^{F - \kappa \varphi} \quad (\kappa = 1) \qquad (**)$$

where F denotes the Ricci potential. When $\kappa = 0$ this is the celebrated Calabi problem solved by S.T.Yau and when $\kappa < 0$ this was solved by Aubin and Yau independently in the 70's. It is well known that (*) is actually a *variational* problem. There is a natural energy on the space $P(X, \omega)$ whose critical points are those φ such that ω_{φ} has constant scalar curvature (csc). This energy was introduced by T. Mabuchi ([10]) in the 1980's. It is called the *K*-Energy map (denoted by ν_{ω}) and is given by the following formula

$$\nu_{\omega}(\varphi) := -\frac{1}{V} \int_{0}^{1} \int_{X} \dot{\varphi_{t}}(\operatorname{Scal}(\varphi_{t}) - \mu) \omega_{t}^{n} dt$$

Above, φ_t is a smooth path in $P(X, \omega)$ joining 0 with φ . The K-Energy does not depend on the path chosen. In fact there is the following well known formula for ν_{ω} where O(1) denotes a quantity which is bounded on $P(X, \omega)$.

$$\nu_{\omega}(\varphi) = \int_{X} \log\left(\frac{\omega_{\varphi}^{n}}{\omega^{n}}\right) \frac{\omega_{\varphi}^{n}}{V} - \mu(I_{\omega}(\varphi) - J_{\omega}(\varphi)) + O(1)$$
$$J_{\omega}(\varphi) := \frac{1}{V} \int_{X} \sum_{i=0}^{n-1} \frac{\sqrt{-1}}{2\pi} \frac{i+1}{n+1} \partial \varphi \wedge \overline{\partial} \varphi \wedge \omega^{i} \wedge \omega_{\varphi}^{n-i-1}$$
$$I_{\omega}(\varphi) := \frac{1}{V} \int_{X} \varphi(\omega^{n} - \omega_{\varphi}^{n}).$$

We have written down the K-energy in the case when $\omega = c_1(X)$. Observe that ν_{ω} is essentially the *difference* of two positive terms. What is of interest for us is that

the problem (*) is not only a variational problem but a *minimization* problem. With this said we have the following fundamental result.

Theorem (S. Bando and T. Mabuchi [1]). If $\omega = c_1(X)$ admits a Kähler Einstein metric then $\nu_{\omega} \geq 0$. The absolute minimum is taken on the solution to (**) (which is unique up to automorphisms of X).

Therefore a *necessary* condition for the existence of a Kähler Einstein metric is a bound from below on ν_{ω} . In order to get a *sufficient* condition one requires that the K-energy *grow* at a certain rate. Precisely, it is required that the K-Energy be *proper*. This concept was introduced by the second author in [17].

Definition 3. — ν_{ω} is proper if there exists a strictly increasing function $f : \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ (where $\lim_{T \longrightarrow \infty} f(T) = \infty$) such that $\nu_{\omega}(\varphi) \ge f(J_{\omega}(\varphi))$ for all $\varphi \in P(M, \omega)$.

Theorem ([17]). — Assume that Aut(X) is discrete. Then $\omega = c_1(X)$ admits a Kähler Einstein metric if and only if ν_{ω} is proper.

The next result was established by the second author and Xiuxiong Chen. It holds in an *arbitrary* Kähler class ω . An alternative proof of this was given by Donaldson for polarized projective manifolds.

Theorem ([3]). — If ω admits a metric of csc then $\nu_{\omega} \geq 0$.

In this paper our interest is to test for a lower bound of ν_{ω} along the large but finite dimensional group G of *matrices* in the polarized case. When we restrict our attention to G we make the connection with Mumfords' Geometric Invariant Theory. The past couple of years have witnessed quite a bit of activity on this problem due to this connection.

To put things in historical perspective consider the various formulations of the Futaki invariant.

i) 1983 Futaki ([6]) introduces his invariant as a lie algebra character on a Fano manifold X

$$F_{\omega}: \eta(X) \longrightarrow \mathbb{C}.$$

ii) 1986 Mabuchi (see [10]) integrates the Futaki invariant with the introduction of the K-energy map. The linearization of the K-energy along orbits of holomorphic vector fields is the real part of the Futaki invariant.

iii) 1992 Ding and Tian ([4]) introduced the generalized Futaki invariant. Here the jumping of complex structures is introduced. The limit of the derivative of the K-Energy map is identified with the generalized Futaki invariant of $X^{\lambda(0)}$ provided this limit has at most normal singularities.

iv) 1997 The CM polarization is defined (see [17]) for *smooth* families, as the relative canonical bundle is explicitly involved in the definition. K-Stability is defined in terms of special degenerations and the generalized Futaki invariant.