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Abstract. — The Mabuchi K-energy map is exhibited as a singular metric on the
refined CM polarization of any equivariant family X

p→ S. Consequently we show
that the generalized Futaki invariant is the leading term in the asymptotics of the
reduced K-energy of the generic fiber of the map p. Properness of the K-energy implies
that the generalized Futaki invariant is strictly negative.

Résumé (CM-stabilité et invariant de Futaki généralisé II). — On interpréte la K-énergie
de Mabuchi comme une métrique singulière sur la CM-polarisation raffinée d’une
famille équivariante X

p→ S. Nous montrons que l’invariant de Futaki généralisé est
le terme principal de l’asymptotique de la K-énergie réduite de la fibre générique de
l’application p. Si la K-énergie est propre, alors l’invariant de Futaki généralisé est
strictement négatif.

1. Introduction

1.1. Statement of results. — Throughout this paper X and S denote smooth,
proper complex projective varieties satisfying the following conditions.

1. X ⊂ S × PN ; PN denotes the complex projective space of lines in CN+1.
2. p := p1 : X → S is flat of relative dimension n, degree d with Hilbert polyno-

mial P .
3. L|Xz is very ample and the embedding Xz := p−1

1 (z)
L
↪→ PN is given by a

complete linear system for z ∈ S.
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4. There is an action of G := SL(N + 1,C) on the data compatible with the
projection and the standard action on PN .

It is well known that (1) and (3) imply that

P(p1∗L) ∼= S × PN .(1.1)

Which in turn is equivalent to the existence of a line bundle A on S such that

p1∗L
∼=
⊕

A︸ ︷︷ ︸
N+1

.(1.2)

Below Chow(X
/
S) denotes the Chow form of the family X

/
S, µ is the coefficient of

kn−1 in P (k), and Mn is the coefficient of
(
m
n

)
in the CGKM expansion of det(p1∗L

⊗m)

for m >> 0. A complete discussion of these notions is given in “CM Stability and the
Generalized Futaki Invariant I ". We refer the reader to that paper for the basic
definitions and constructions that are used in the present article.

We define an invertible sheaf on S as follows.

Definition 1 (The Refined CM polarization(1)). — We have

L1(X
/
S) := {Chow(X

/
S)⊗ Ad(n+1)}n(n+1)+µ ⊗ M−2(n+1)

n(1.3)

With the family p1 : X → S fixed throughout, we will denote L1(X
/
S) by L1 in

the remainder of the paper.
Our first result exhibits the Mabuchi energy as a singular Hermitian metric on L1.

Theorem 1. — Let || || be any smooth Hermitian metric on L−1
1 .(2) Then there is a

continuous function ΨS : S \∆→ (−∞, c) such that for all z ∈ S
/

∆

d(n+ 1)νω|Xz (ϕσ) = log

Å
e(n+1)ΨS(σz) || ||2(σz)

|| ||2(z)

ã
.(1.4)

Here c denotes a constant which depends only on the choice of background Kähler
metrics on S and X, ∆ denotes the discriminant locus of the map p1, and ω|Xz

denotes the restriction of the Fubini Study form of PN to the fiber Xz.

Remark 1. — This should be compared with the main result in Section 8 of [17]. The
principal contribution of our present work is the observation that the whole theory in
Section 8 of [17] should be recast from the beginning with the sheaf L1.

Let X ↪→ PN be an n dimensional projective variety with Hilbert polynomial P .
Let Hilbm(X) denote the mth Hilbert point of X (see [12] for further information ).
If λ is a one parameter subgroup of G then it is known (see [12] ) that the weight,

(1) We use this terminology in order to distinguish this sheaf from one introduced by the second
author in ([17]).
(2) L−1

1 denotes the dual of L1.
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wλ(m), of Hilbm(X) with respect to λ is a polynomial in m of degree at most n+ 1.
That is,

wλ(m) = an+1(λ)mn+1 + an(λ)mn + · · ·

Then the ratio may be expanded as follows.

wλ(m)

mP (m)
= F0(λ) + F1(λ)

1

m
+ · · ·+ Fl(λ)

1

ml
+ . . .

Definition 2 (Donaldson ([5])). — F1(λ) is the generalized Futaki invariant of X with
respect to λ.

In our previous paper we have shown the following.

Theorem (The weight of the Refined CM polarization). — i) There is a natural G lin-
earization on the line bundle L1.

ii) Let λ be a one parameter subgroup of G. Let z ∈ HilbPPN (C). Let wλ(z) denote
the weight of the restricted C∗ action (whose existence is asserted in i)) on L−1

1 |z0
where z0 = λ(0)z. Then

wλ(z) = F1(λ).(1.5)

The main result of the paper is the following corollary of (1.4) and (1.5).

Corollary 1 (Algebraic asymptotics of the Mabuchi energy). — Let ϕλ(t) be the Bergman
potential associated to an algebraic 1psg λ of G, and let z ∈ S \∆. Then there is an
asymptotic expansion

d(n+ 1)νω|Xz (ϕλ(t))−ΨS(λ(t)) = F1(λ) log(|t|2) +O(1) as |t| → 0.(1.6)

Moreover ΨS(λ(t)) = ψ(λ) log(|t|2) +O(1) where ψ(λ) ∈ Q≥0. Moreover, ψ(λ) ∈ Q+

if and only if λ(0)Xz = Xλ(0)z (the limit cycle(3) of Xz under λ ) has a component
of multiplicity greater than one. Here O(1) denotes any quantity which is bounded as
|t| → 0.

Moser iteration and a refined Sobolev inequality (see [11] and [7]) yield the follow-
ing.

Corollary 2. — If νω|Xz is proper (bounded from below) then the generalized Futaki
invariant of Xz is strictly negative (nonnegative) for all λ ∈ G.

Remark 2. — We call the left hand side of (1.6) the reduced K-Energy along λ. We
also point out that while it is certainly the case that F1(λ) may be defined for any
subscheme of PN it evidently only controls the behavior of the K-Energy when λ(0)Xz

is reduced.

(3) See [12] pg. 61.
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Remark 3. — The precise constant d(n+ 1) in front of νω is not really crucial, since
what really matters is the sign of F1(λ) +ψ(λ). That ΨS(λ(t)) has logarithmic singu-
larities can be deduced from [13].

Remark 4. — We emphasize that we do not assume the limit cycle is smooth.

2. Background and Motivation

Let (X,ω) be a compact Kähler manifold (ω not necessarily a Hodge class) and
P (X,ω) := {ϕ ∈ C∞(X) : ωϕ := ω +

√
−1

2π ∂∂ϕ > 0} the space of Kähler potentials.
This is the usual description of all Kähler metrics in the same class as ω (up to
translations by constants). It is not an overstatement to say that the most basic
problem in Kähler geometry is the following

Does there exist ϕ ∈ P (X,ω) such that Scal(ωϕ) ≡ µ? (∗)
This is a fully nonlinear fourth order elliptic partial differential equation for ϕ. µ is a
constant, the average of the scalar curvature, it depends only on c1(X) and [ω]. When
c1(X) > 0 and ω represents the anticanonical class a simple application of the Hodge
Theory shows that (∗) is equivalent to the Monge-Ampere equation.

det(gij + ϕij)

det(gij)
= eF−κϕ (κ = 1) (∗∗)

where F denotes the Ricci potential. When κ = 0 this is the celebrated Calabi problem
solved by S.T.Yau and when κ < 0 this was solved by Aubin and Yau independently
in the 70’s. It is well known that (∗) is actually a variational problem. There is a
natural energy on the space P (X,ω) whose critical points are those ϕ such that ωϕ
has constant scalar curvature (csc). This energy was introduced by T. Mabuchi ([10])
in the 1980’s. It is called the K-Energy map (denoted by νω) and is given by the
following formula

νω(ϕ) := − 1

V

∫ 1

0

∫
X

ϕ̇t(Scal(ϕt)− µ)ωnt dt.

Above, ϕt is a smooth path in P (X,ω) joining 0 with ϕ. The K-Energy does not
depend on the path chosen. In fact there is the following well known formula for νω
where O(1) denotes a quantity which is bounded on P (X,ω).

νω(ϕ) =

∫
X

log
Å
ωϕ

n

ωn

ã
ωϕ

n

V
− µ(Iω(ϕ)− Jω(ϕ)) +O(1)

Jω(ϕ) :=
1

V

∫
X

n−1∑
i=0

√
−1

2π

i+ 1

n+ 1
∂ϕ ∧ ∂ϕ ∧ ωi ∧ ωϕn−i−1

Iω(ϕ) :=
1

V

∫
X

ϕ(ωn − ωϕn).

We have written down the K-energy in the case when ω = c1(X). Observe that νω
is essentially the difference of two positive terms. What is of interest for us is that
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the problem (∗) is not only a variational problem but a minimization problem. With
this said we have the following fundamental result.

Theorem (S. Bando and T. Mabuchi [1]). — If ω = c1(X) admits a Kähler Einstein
metric then νω ≥ 0. The absolute minimum is taken on the solution to (∗∗) (which is
unique up to automorphisms of X).

Therefore a necessary condition for the existence of a Kähler Einstien metric is a
bound from below on νω. In order to get a sufficient condition one requires that the
K-energy grow at a certain rate. Precisely, it is required that the K-Energy be proper.
This concept was introduced by the second author in [17].

Definition 3. — νω is proper if there exists a strictly increasing function f : R+ −→
R+ (where limT−→∞ f(T ) =∞) such that νω(ϕ) ≥ f(Jω(ϕ)) for all ϕ ∈ P (M,ω).

Theorem ([17]). — Assume that Aut(X) is discrete. Then ω = c1(X) admits a Kähler
Einstein metric if and only if νω is proper.

The next result was established by the second author and Xiuxiong Chen. It holds
in an arbitrary Kähler class ω. An alternative proof of this was given by Donaldson
for polarized projective manifolds.

Theorem ([3]). — If ω admits a metric of csc then νω ≥ 0.

In this paper our interest is to test for a lower bound of νω along the large but
finite dimensional group G of matrices in the polarized case. When we restrict our
attention to G we make the connection with Mumfords’ Geometric Invariant Theory.
The past couple of years have witnessed quite a bit of activity on this problem due
to this connection.

To put things in historical perspective consider the various formulations of the
Futaki invariant.

i) 1983 Futaki ([6]) introduces his invariant as a lie algebra character on a Fano
manifold X

Fω : η(X) −→ C.

ii) 1986 Mabuchi (see [10] ) integrates the Futaki invariant with the introduction
of the K-energy map. The linearization of the K-energy along orbits of holomorphic
vector fields is the real part of the Futaki invariant.

iii) 1992 Ding and Tian ([4]) introduced the generalized Futaki invariant. Here
the jumping of complex structures is introduced. The limit of the derivative of the
K-Energy map is identified with the generalized Futaki invariant of Xλ(0) provided
this limit has at most normal singularities.

iv) 1997 The CM polarization is defined (see [17]) for smooth families, as the
relative canonical bundle is explicitly involved in the definition. K-Stability is defined
in terms of special degenerations and the generalized Futaki invariant.
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