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REGULAR POISSON MANIFOLDS OF COMPACT TYPES

by Marius CRAINIC, Rui LOJA FERNANDES & David MARTINEZ TORRES

Abstract. — This is the second manuscript of a series dedicated to the study of Poisson
structures of compact types (PMCTs). In this manuscript, we focus on regular PM-
CTs, exhibiting a rich transverse geometry. We show that their leaf spaces are integral
affine orbifolds. We prove that the cohomology class of the leafwise symplectic form
varies linearly and that there is a distinguished polynomial function describing the
leafwise sympletic volume. The leaf space of a PMCT carries a natural Duistermaat-
Heckman measure and a Weyl type integration formula holds. We introduce the notion
of a symplectic gerbe, and we show that they obstruct realizing PMCTs as the base
of a symplectic complete isotropic fibration (a.k.a. a non-commutative integrable sys-
tem).

Résumé. (Variétés de Poisson réguliéres de types compacts) — Nous consacrons une
suite d’articles aux variétés de Poisson de types compacts (nous emploierons simple-
ment acronyme PMCTs). Ce travail, qui est le second de cette suite, se concentre
sur les PMCTs réguliéres, et explore leur riche géométrie transverse. Nous montrons
que l’espace de leurs feuilles sont des orbi-variétés affines entiéres. Nous établissons
une dépendance linéaire de la classe de cohomologie de la structure symplectique
dont héritent les feuilles et exhibons un polynoéme qui décrit le volume symplec-
tique des feuilles. Nous équipons ’espace des feuilles d'un PMCT d’une mesure de
Duistermaat-Heckman naturelle et donnons une formule d’intégration de type Weyl.
Nous introduisons enfin la notion de gerbe symplectique et montrons que celles-
ci sont Iobstruction & la construction de la PMCT comme la base d’une fibration
symplectique compléte & fibres isotropes (autrement dit, un systéme intégrable non-
commutatif).
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CHAPTER 1

INTRODUCTION

This is the second manuscript of a series of works devoted to the study of Poisson
structures of compact types (PMCTs). These are the analogs in Poisson Geometry of
compact Lie groups in Lie theory. In the first paper of this series [13] we have discussed
general properties, described several examples, and outlined our general plan. In this
paper, which is self-contained, we focus on regular PMCTs and we discover a very
rich transverse geometry, where several structures, both classical and new, interact
with each other in a non-trivial way. These include orbifold structures, integral affine
structures, symplectic gerbes, etc. Moreover, we find that celebrated results, like the
Duistermaat-Heckman Theorem on the linear variation of the symplectic class in the
cohomology of reduced spaces, the polynomial behavior of the Duistermaat-Heckman
measure, the Atiyah-Guillemin-Sternberg Convexity Theorem, or the Weyl Integra-
tion Formula, fit perfectly into the world of PMCTs, arising as particular statements
of general results concerning PMCTs.

Given a Poisson manifold (M, ) we will look at s-connected integrations ({, ),
which are symplectic Lie groupoids of compact type. At the level of Lie groupoids,
there are several compact types C characterized by possible conditions on {:

(1.1) C € {proper, s-proper, compact},

that is, Hausdorff Lie groupoids with proper anchor map, proper source map, and
compact manifold of arrows, respectively. For example, when {, = G x M comes
from a Lie group acting on a manifold M, the three conditions correspond to the
properness of the action, the compactness of G, and the compactness of both G and
M, respectively. Therefore, one says that the Poisson manifold (M, ) is of:

— C-type if it has an s-connected integration (£, ) with property C;
— strong C-type if its canonical integration ¥.(M, ) has property C.

A Poisson manifold (M, ) comes with a partition into symplectic leaves, gener-
alizing the partition by coadjoint orbits from Lie theory. In this paper, we consider
PMCTs where the dimension of the leaves is constant, leaving the non-regular case
to the next paper in the series [12]. This gives rise to a regular foliation ¢/ on M, so,
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2 CHAPTER 1. INTRODUCTION

in some sense, we are looking at symplectic foliations from the perspective of Poisson
Geometry.
For a general regular Poisson manifold, the leaf space

B = M/s

is very pathological. However, for us, the first immediate consequence of any of the
compactness conditions is that B is Hausdorff. Moreover, we will see that it comes
with a very rich geometry, illustrated in the following theorem, which collects several
results spread throughout the paper:

Theorem 1.0.1. — Given a regular Poisson manifold (M, w) of proper type and an
s-connected, proper symplectic integration ((,Q):

(a) The space B of symplectic leaves comes with an orbifold structure 8 = B(().

(b) There is an induced integral affine structure A on 3.

(¢) The classical effective orbifold underlying .3 is good.

(d) There is a symplectic & -gerbe over .3, where & is the symplectic torus bundle
induced by A. This gerbe is classified by the Lagrangian Dixmier-Douady class:

CQ(C}v Q) € H2($7 giagr)~

(e) The class co(G, Q) vanishes if and only if (M, n) admits a proper isotropic re-
alization q : (X,Qx) — (M, ) for which ¢ = Bx(M,r), a natural symplectic
integration constructed from X and the orbifold structure ..

The presence of an orbifold structure on the leaf space which, in general, is non-
effective, gives rise to several technical difficulties throughout the discussion. When
the symplectic leaves are 1-connected, then B is just a smooth manifold, and no
further complications arise from orbifolds. In this case, all the other main features of
PMCTs are already present, and it includes interesting examples, such as the regular
coadjoint orbits or the principal conjugacy classes of a compact Lie group. For that
reason, in the general discussion we will often consider this case first.

The different geometric structures present on the leaf space of a PMCT, mentioned
in the previous theorem, interact nicely with the leafwise symplectic geometry. One
illustration of this interaction is the linear variation of symplectic forms in coho-
mology, generalizing the classical Duistermaat-Heckman Theorem. For simplicity, we
concentrate on the smooth case, where the leaves are 1-connected. Then to each b € B
corresponds a symplectic leaf (Sy,ws), and the cohomologies H?(S,) yield a bundle
&/ — B. The cohomology class of the leafwise symplectic form defines a section of
this bundle:

B>b— [wb] et = Hz(Sb).

In the s-proper case, the leaves are compact and &/ is a smooth flat vector bundle
over B. The flat connection is the so called Gauss-Manin connection and arises from
the underlying integral cohomology. Using parallel transport, one can compare classes
[ws] at distinct points b € B, once a path has been fixed. On the other hand, the
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CHAPTER 1. INTRODUCTION 3

integral affine structure on B of the previous theorem determines a developing map,
defined on the universal cover of B:

dev: B —R? (g =dimB).

Denoting the Chern classes of the principal torus bundle ¢ : s7!(x¢) — Sp,, where s
and ¢ are the source/fiber of the s-proper integration, by

Cly...,Cq € HZ(SbO),

the linear variation theorem can be stated as follows:

Theorem 1.0.2. — If (M, ) is a regular, s-proper Poisson manifold, with 1-connected
symplectic leaves, then for any path v in B starting at by one has

7 ([wy)]) = [wee] +dev? (V)er + -+ + dev? ()cq.

Similar formulas hold for a general Poisson manifold of s-proper type.

One can also look at volume forms instead. Assume as before that we have an
s-proper integration ({, ) of (M, ). Pushing forward the Liouville measure associ-
ated to €2, one obtains the Duistermaat-Heckman measure on the leaf space:

kpH € M(B).

On the other hand, the integral affine structure on B gives rise to another measure,
pag € M(B). The classical result on the polynomial behavior of the Duistermaat-
Heckman measure is a special case of the following general result for PMCTs:

Theorem 1.0.3. — If (M, ) is a regular Poisson manifold, with s-connected, s-proper
integration ((, ), then:

i = (0 vol)2piag,
where vol : B — R is the leafwise symplectic volume function and v : B — N counts
the number of connected components of the isotropy group (. (r € Sy). Moreover,
(v - vol)? is a polynomial relative to the orbifold integral affine structure on B.

The previous theorem has an interesting version already on M, where we obtain
two measures, pd4; and p4f = uys, both induced by densities p; and pas, which
are invariant under all Hamiltonian flows. Our study of such invariant densities yields
the following Fubini type theorem:

Theorem 1.0.4. — If (M, x) is a regular Poisson manifold, with proper integration
(€,Q), then for any f € C°(M):

[ 1@t = [ (w0 Sbf(y)dﬂsb(y)) dpins (),

where pg, is the Liouwville measure of the symplectic leaf Sy, and v : B — N is the func-
tion that for each b € B counts the number of connected components of the isotropy
group Gy, (x € Sp).
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4 CHAPTER 1. INTRODUCTION

We shall see in [12] that a similar theorem is valid for all, including non-regular,
PMCTs. This theorem includes, as a special instance, the classical Weyl Integration
Formula.

The rest of this paper is organized as follows. Chapter 2 is devoted to foliations
and orbifolds, recalling Haefliger’s approach to transversal geometry, fixing the neces-
sary framework, but also illustrating the various compactness properties (1.1) in the
simpler context of foliations. In this chapter, the orbifold structure on the leaf space
of a PMCT, stated in part (a) of Theorem 1.0.1, is shown to exist.

Chapter 3 includes some basics on Integral Affine Geometry and describes its re-
lationship with Poisson Geometry. Besides proving part (b) of Theorem 1.0.1, we
discover new Poisson invariants, the so-called extended monodromy groups which give
rise to obstructions to s-properness, but which are interesting also for general Poisson
manifolds.

Chapters 4 and Chapter 5 concern Theorem 1.0.2, on the linear variation of the
cohomology class of the leafwise symplectic form. We first treat the case of smooth leaf
space and then the orbifold case. Both these chapters start by revisiting the developing
map for integral affine structures from a novel groupoid perspective. That allows for
a global formulation, free of choices, which is more appropriate for our purposes. We
also obtain a decomposition result for Poisson manifolds of s-proper type which, from
the point of view of classification, indicates two types of building blocks: (i) the strong
proper ones with full variation, and (ii) the ones with no variation, corresponding to
symplectic fibrations over integral affine manifolds.

Chapter 6 discusses the Duistermaat-Heckman measures on PMCTs and on their
leaf spaces, its relationship with the measures determined by the integral affine struc-
tures, and the interaction with the Liouville measure on the symplectic leaves, leading
to proofs of Theorem 1.0.3, on the polynomial nature of the Duistermaat-Heckman
measure, and the integration formula of Theorem 1.0.4.

Chapter 7 explains the relationship between PMCTs and proper isotropic realiza-
tions, which appears in part (e) of Theorem 1.0.1. For any proper isotropic realization
q:(X,Qx) — (M, n) we introduce a “holonomy groupoid relative to X,” Holx (M, ),
which is usually smaller than the canonical integration (M, 7), and hence has better
chances to be proper. The groupoids Holx (M, 7) not only arise in many examples,
but are an important concept. Indeed, recall that foliations come with two standard s-
connected integrations: the largest one which is the monodromy groupoid Mon (M, )
and the smallest one which is the holonomy groupoid Hol(M, ). In Poisson geom-
etry, the integration X (M, 7) is the analog of Mon(M,sF) but, in general, there is
no analog of the holonomy groupoid. Our results suggest that, in Poisson Geometry,
instead of looking for the smallest integration, one should look for the smallest one
that acts on a given symplectic realization. This property characterizes Holx (M, )
uniquely.

Chapters 8 and 9 describe our theory of symplectic gerbes, first in the smooth case
and then in the orbifold case, proving parts (d) and (e) of Theorem 1.0.1. Our de-
parture point is the usual theory of S'-gerbes, which we first extend to & -gerbes,
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