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GROWTH OF A PRIMITIVE OF A
DIFFERENTIAL FORM

by Jean-Claude Sikorav

Abstract. — For an exact differential form on a Riemannian manifold to have a
primitive bounded by a given function f , by Stokes it has to satisfy some weighted
isoperimetric inequality. We show the converse up to some constants if M has bounded
geometry. For a volume form, it suffices to have the inequality (|Ω| ≤

R
∂Ω

fdσ for
every compact domain Ω ⊂ M). This implies in particular the “well-known”result that
if M is the universal covering of a compact Riemannian manifold with non-amenable
fundamental group, then the volume form has a bounded primitive. Thanks to a recent
theorem of A. Żuk, we also obtain that if the fundamental group is infinite, the volume
form always has a primitive with linear growth.

Résumé (Croissance d’une primitive d’une forme différentiable)
Pour qu’une forme différentielle exacte sur une variété riemannienne M ait une pri-

mitive majorée par une fonction f donnée, il faut d’après Stokes satisfaire une certaine
inégalité isopérimétrique pondérée. Nous montrons une réciproque à des constantes
près si la variété est à géométrie bornée. Pour une forme volume, l’inégalité (|Ω| ≤R
∂Ω fdσ pour tout domaine compact Ω ⊂ M) suffit. Ceci implique en particulier le
résultat « bien connu » que si M est le revêtement universel d’une variété riemannienne
compacte à groupe fondamental non moyennable, la forme volume a une primitive
bornée. Grâce à un théorème récent d’A. Żuk, nous obtenons aussi que si le groupe
fondamental est infini, la forme volume a toujours une primitive à croisssance linéaire.
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1. Statement of the results and comments

Let M be a complete and non compact Riemannian manifold, ω ∈ Ωq(M)
be an exact differential form of degree q, and f : M → R+ be a continuous
function. We want to find sufficient conditions for the existence of a primitive
τ ∈ Ωq−1(M) such that |τ | ≤ f . Stokes’ formula gives as a necessary condition

the weighted isoperimetric inequality

(1)
∣∣∣ ∫

T

ω
∣∣∣ ≤ ∫

|∂T |
f for every T ∈ S1

q (M).

Here S1
q (M) denotes the vector space of singular q-chains T =

∑
λisi of class

C1, and ∫
|S|

f :=
∑

i

|λi|
∫
∆q

(f ◦ si) |Λqdσ|.

Examples. — If M is simply connected and has nonpositive curvature, then
any closed and bounded form has a primitive with at most linear growth, this
being clearly optimal by Stokes in the case M = R

2, ω = xdy. If the curvature
is ≤ −a2 < 0, then the primitive is even bounded if q ≥ 2.

On the other hand, there is an example of Gromov (see [G3], 3.K’3, 6.B1 (c))
for q = 2, M the universal covering of a compact X , and ω lifted from X , in
which the inequality (1) implies that no primitive of ω has recursive growth!

Here we investigate the following

Question. — Assume that (1) holds. Does ω have a primitive τ ∈ Ωq−1(M)
such that |τ | ≤ f ? Or at least, such that |τ |x ≤ C1maxB(x,C2) f ?

The existence of a primitive such that |τ | ≤ f follows from Hahn-Banach if
we allow τ to be flat in the sense of Whitney [W] (roughly, this means that τ has
measurable coefficients and dτ = ω holds in the sense of currents). To obtain
a result for smooth forms, we shall assume that M has bounded geometry in
the sense that it is complete, its sectional curvature is bounded in absolute
value and its injectivity radius is bounded below. Examples include coverings
of compact manifolds and leaves of foliations on compact manifolds. Such
a manifold admits a triangulation with bounded geometry, in a sense made
precise in section 2. Our main result is the

Theorem 1.1. — Let M be a Riemannian manifold, with a triangulation K of
bounded geometry. Let ω ∈ Ωq(M) be a closed q-form, and let f ∈ C0(M,R+)
be such that

(2)
∣∣∣ ∫

T

ω
∣∣∣ ≤ ∫

|∂T |
f for every simplicial chain T ∈ Cq(K).
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Then ω has a primitive τ such that, for some constants C1(M,K) and
C2(M,K), one has

|τ |x ≤ C1 max
B(x,C2)

(
|ω|+ f

)
.

I do not know if (assuming the stronger isoperimetric inequality (1)) one can
dispense with the assumption of bounded geometry, or if one can drop |ω| in
the estimate.

In the case of volume forms, we get:

Corollary 1.2. — Let (M,K) be as above, with M oriented. Assume that

(3) |Ω| ≤
∫

∂Ω

f dσ for every simplicial domain Ω ⊂ M.

Then the volume form ν has a primitive τ such that

|τ |x ≤ C1 max
B(x,C2)

f.

Combining this with a recent result of A. Żuk [Z], we obtain:

Corollary 1.3. — Let X be a compact oriented Riemannian manifold with
infinite fundamental group. Then the volume form on the universal covering
M = X̃ has a primitive τ with at most linear growth.

Comment. — To my knowledge, the first mention of growth of primitives was
made by D. Sullivan in 1976 (see [Su]). He asked whether, on an oriented
manifold satisfying the inequality |Ω| ≤ Cst. vol(∂Ω) for every compact domain
Ω ⊂ M , the volume form has a bounded primitive (M is “open at infinity”).
He was especially interested in the case when M is a leaf of a foliation on a
compact manifold. In the case when M is the universal cover of a compact
manifold X , the isoperimetric inequality is equivalent to the Følner criterion
for the non-amenability of π1(X) (see [GLP], chap. 6).

A positive answer to the question of Sullivan has been asserted (without
any restrictions) by M. Gromov (see [G1], p. 197). R. Brooks (see [Br], pp. 61–
62), sketches a proof “conceptually simple but with some unpleasant technical
details”: one first finds, for a suitable triangulation [geometrically bounded
presumably], a bounded cochain such that dψ = vol. Then one smooths out ψ
after letting this triangulation get arbitrarily small.

Another proof (under the assumption of bounded geometry) has been given
by J. Block and S.Weinberger (see [Bl-W], remark after Theorem 3.1, cf. also
[A], Thm. 2.13), but it seems somewhat elliptic.

Another case which has had important applications in algebraic geometry
is the following [G2]: if M = X̃ where X is a compact manifold equipped
with a Kähler form ω, then (X,ω) is said to be Kähler-hyperbolic if ω has a
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bounded primitive. Note that in all known examples the growth of the primitive
is at most linear. In the symplectic case on the other hand, one can find an
exponential growth by taking X to be a T 2-bundle on T 2 with hyperbolic
monodromy.

Finally, in [G3], 5.B5, Gromov investigates the general problem of growth of
primitives of bounded forms, which he relates via Stokes to “cofilling inequali-
ties”. One can find there a wealth of related examples and questions, some of
which we plan to tackle in a forthcoming paper.

Acknowledgments. — I thank Rabah Souam for letting me use an unpublished
partial proof of the main result, and Christophe Pittet and Andrzej Żuk for
encouraging me in writing at last this paper! I also thank the referee for the
careful reading, and in particular for having spotted a significant error in my
first proof of Corollary 1.

2. Triangulations of bounded geometry

A suitable version of the Cairns-Whitehead triangulation theorem implies
that every Riemannian manifold with bounded geometry admits a smooth tri-
angulation with bounded geometry (cf. [A], theorem 1.14) in the following sense:

(BG1) the link of each simplex s contains at most S simplices, S
independent of s;

(BG2) each simplex is quasi-isometric to a standard simplex, i.e. there
exists a diffeomorphism ϕs : s → ∆dim s such that |dϕ±1

s | ≤ L,
L independent of s.

We shall assume a slightly stronger version of (BG2), easy to obtain by
subdividing:

(BG3) ϕs can be extended with the same property |dϕ±1
s | ≤ L to a

neighbourhood U(s) of s in M , sending it to a fixed neighbour-
hood of ∆dim s in R

n, n = dimM .

Note that if M covers a compact X , then any smooth triangulation lifted
from X has bounded geometry in this sense.

3. Proof of the theorem

Proceeding as in [So], we construct the primitive as F. Laudenbach in [L],
who in turns follows the constructive proof of De Rham’s theorem in [Sin-T],
pp. 162–173. The new point is the introduction of explicit estimates at each
step.
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First step. — We reduce the theorem to the case when
∫

s
ω = 0 for every

s ∈ K(q).

1) Consider the simplicial cochain Iq(ω) ∈ Cq(K), image of ω by the inte-
gration morphism Iq : Ωq(M) → Cq(K). The hypothesis implies∣∣Iq(ω)(T )

∣∣ ≤ Vq−1‖∂T ‖f , ∀T ∈ Cq(K),

where Vq−1 = maxs∈K(q) vol(s) and ‖
∑

λisi‖f =
∑

|λi|maxsi f , seminorm on
Cq−1(K). By Hahn-Banach, we can define a linear form tω ∈ Cq−1(K) which
satisfies

• tω(∂T ) = Iq(ω)(T ) for every T ∈ K(q), i.e. δtω = Iq(ω);

• |tω(S)| ≤ Vq−1‖S‖f for every S ∈ Cq−1(K).

In particular, we have∣∣tω(s)∣∣ ≤ Vq−1max
s

f ∀s ∈ K(q−1).

2) Since K has bounded geometry, there exists a partition of unity {gj}
subordinate to the covering {st(vj)} (where (vj) are the vertices of K), such
that the differentials |dgj| are bounded by a constant D. Here st(v) denotes
the star of the vertex v, i.e. the union of all simplices containing v. Note that
it is a neighbourhood of v which is sandwiched between two balls of fixed radii.

We can then construct a right inverse P ∗ : C∗(K) → Ω∗(M) to I∗, commut-
ing with the differentials (see [Sin-T], Step 2, p. 166):

P q(t) =
∑

s∈K(q)

t(s)P q(s∗),

where s∗ is the generator of Cq(K) dual to s (i.e. s∗(σ) = δs,σ) and

P q
(
〈vj0 , · · · , vjq 〉∗

)
= q !

q∑
i=0

gjidgj0 ∧ · · · ∧ d̂gji ∧ · · · ∧ dgjq .

It satisfies suppP q(s∗) ⊂ st(s) and ‖P q(s∗)‖L∞ ≤ (q + 1)!Dq. Thus, if stq(x)
is the set of q-simplices s such that x ∈ st(s), we get the estimate∣∣P q(t)

∣∣
x
≤ S(q + 1)!Dq max

s∈stq(x)

∣∣t(s)∣∣.
Each simplex in stq(x) is contained in B(x, 2d) where d = max diam s ≤ L

√
n.

Thus for t = tω and t = Iq(ω), we obtain∣∣P q−1(tω)
∣∣
x
≤ Sq !Dq−1Vq−1 max

B(x,2d)
f,∣∣P qIq(ω)

∣∣
x
≤ S(q + 1)!DqVq max

B(x,2d)
|ω|.
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