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POSITIVITY OF QUADRATIC BASE CHANGE
L-FUNCTIONS

BY HERVE JACQUET & CHEN NAN

ABSTRACT. — We show that certain quadratic base change L-functions for G1(2) are
non-negative at their center of symmetry.

RESUME (Positivité des fonctions L du changement de base quadratique)
On montre que certaines des fonctions L de G1(2) obtenues par changement de base
quadratique sont positives en leur centre de symétrie.
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34 JACQUET (H.) & CHEN (N.)

1. The main theorem

Let E/F be a quadratic extension of number fields and ng,p or simply 7
the quadratic character of F' attached to E, {1,7} the Galois group of E/F.
We will often write

T(2) = Z.

We will denote by U; the unitary group in one variable, that is, the group
of elements of norm 1 in E*. Suppose that 7 is an automorphic cuspidal
representation of G1(2, F) whose central character w is trivial on the group of
norms. In other words w = 1 or w = 1. We assume that 7 is not dihedral
with respect to F so that the base change representation II of 7 to G1(2, E) is
still automorphic and cuspidal. Let €2 be an idele class character of F whose
restriction to F, is equal to w. Our main result is the following theorem:

THEOREM 1. — With the previous notations: L(%,H ® Qfl) > 0.

Ifw=1and Q =1 then L(s,II) = L(s,7)L(s,7®n) and the result has been
established by Guo (see [G1], under some restrictions on E/F). As a matter
of fact, by using results on averages of L-functions (see [FH]), Guo is able to
prove that L(%, m) > 0, which then implies our result for w = 1, Q = 1, without
restriction on E/F. At any rate, Baruch and Mao [BM] have independently
established that L(3,m) > 0 if w = 1. However, the present result—where Q)
needs not be trivial-is more general, even in the case w = 1.

Results on the positivity of G1(2) L-functions have been considered by many
mathematicians (see, for instance, [BFH], [Gr], K], [Kk], [KS], [KZ], [S], [R],
[S], [W3], [Ya]). Specially, the positivity of the twisted L-function at hand has
been investigated (for holomorphic forms) in [GZ].

We note that Q7 = Q~! and II is self-contragredient: II = II. Thus
LT =L(s, " @ Q7)) = L(s, 1o Q) = L(s,1® Q).
Likewise,
(s, MO Ne(1 -5, TN ) = e(s,IRQ Ne(1 -5, IR Q) = 1.

In particular (3,1 ® Q~1) = £1. Thus, despite the fact that Il ® Q! is not
necessarily self-contragredient, the L-function L(s,IT ® 271) is symmetric:

L, ) =¢e(s,ToQ HL1 -5, T Q).
The following lemma is easily verified:

LEMMA 1. — Let vg be a place of F. If vy is inert and v is the corresponding
place of E then:

LA, 007" >0.
If vy splits into v1 and vo then:

L(3 10, ® QN)L(3,1,, ® Q') > 0.
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Let Sy be a finite set of places of F' and S the corresponding set of places

of E. Set
LS(s, M@0 ") =[] L(s, 11, Q).
V€S

In view of the lemma, the statement of the theorem is equivalent to the posi-
tivity of L9(3, 1T @ Q7).

If IT is dihedral with respect to F, then II is associated with an idele class
character = of E whose restriction to F,* is wn. Thus E7 = == ! and

L(s,T@Q Y =L(s,ZQ YL(s,2"Q7 ") = L(5,2Q " HL(s,271Q71).

If Q is trivial or even quadratic this is > 0. At any rate, in general, ZQ~!
and Z71Q~! have n for restriction to F;°. Thus there are cuspidal representa-
tions 7 and my of GI(2, ;) with trivial central character such that:

L(s,2Q7 Y = L(s,m),L(s,27'Q71) = L(s,m2)

and by the results already quoted each factor is > 0 at s = % We will not

discuss this case but remark that, by considering the discrete but non-cuspidal
terms in our trace formula, we could probably handle this case as well.

The proof of the theorem is based on a careful analysis of the relative trace
formula of [J2] (In the case = 1 we could, like Guo, use the simpler trace for-
mula of [J1].) Namely, we consider an inner form G of Gl(2, F) which con-
tains a torus T isomorphic to E*. There is then an ¢ € F* uniquely de-
termined modulo Norm(E*), such that the pair (G,T') is isomorphic to the
pair (G, T) defined as follows. We denote by H, the semi-simple algebra of
matrices g € M (2, E) of the form

8 (2 )

a

and by G, its multiplicative group. Then

a 0
= {t - ( 0 a ) }
We let Z be the center of G.. We regard 2 as a character of T'(Fy): t — Q(a).

Suppose that f is a smooth function of compact support on G (Fa). We form
as usual a kernel

Ki(z,y) = -1 d
e[ 3 e

and a distribution

Je(f) = Kf(t17t2) Q(tl)ildtl Q(tg)dtg.

/(Z(FA)T(F)\T(FA\))2
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36 JACQUET (H.) & CHEN (N.)

We have a spectral decomposition of the kernel:

Kf = ZKf,U + Kf,cont 5

the sum on the right is over all irreducible (cuspidal) automorphic representa-
tions o of G: if G is not split, by cuspidal we mean an irreducible automorphic
representation which is not one-dimensional. The term K cont represents the
contribution of the one dimensional representations and the continuous spec-
trum which is present only if G, is split, that is, € is a norm. For every o the
kernel Ky , is defined by

Kjo(z,y) = Zp

the sum over an orthonormal basis of the space of 0. We define then:

T (f) = / Koty ta) Q(t1) " dty Qts)dto.
(Z(Fa)T(F)\T(Fy))?

This is a distribution of positive type: if f = f; * f; where fi(g) := f1(g™")

then
Jo(f) = ZV(P(f1)¢) v(p(f1)9).

where we have set

(2) V() = o)) dt;

/Z(FA\)T(F)\T(FA)
thus J,(f) > 0. Moreover, if v is not identically zero on the space of o, or
as we shall say, if o is distinguished by (T,Q), then every local component
Ou, 18 distinguished by (Ty,, Ry, ), that is, admits a non-zero continuous linear
form v, such that vy, (7, (t)u) = Oy, (t)v, (u) for all t € Ty, and all smooth
vectors u. The dimension of the space of such linear forms is one. One can
then define a local distribution

UUO fvo ZVUO f’Uo V’Uo(u)7

the sum over an orthonormal basis. The distribution J,, is defined within a
positive factor. It is of positive type. Normalizing in an appropriate way we get

(3) Jo(£) = C0) [T Juo (fun),

where the constant C(c) is positive. Assuming that L(3, 1T ® Q71) # 0 we
can find an € such that there is an automorphic representation o of GG, corre-
sponding to 7 and distinguished by (7', Q) (see [J2], [W4]). Another goal of the
paper is to obtain an ezxplicit decomposition of the above form, with a specific
normalization (Theorem 2). The crux of the matter is then to show that C(o)
is essentially equal to L(%, I ® Q™1 which gives the positivity result. Possibly,
this can be used to provide lower bounds for L(3,TT® Q7).
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POSITIVITY OF QUADRATIC BASE CHANGE L-FUNCTIONS 37

We note that if € exists then it is unique. Indeed, this follows at once from
the following local fact: if vg is inert, € not a norm at vy, 7 is a square integrable
representation of G1(2, F, ), and o the representation of G (F,,) corresponding
to m then 7 and o cannot be both distinguished by (T, Q) (see [W4]).

We stress that there is no direct way to compute the constant C'(o) because
there is no direct relation between the global linear form v and the local linear
forms v,,. The situation at hand (a globally defined distribution of positive type
decomposed as a product over all places of F' of local distributions of positive
type, times the appropriate special values of L-functions) is, conjecturally, quite
general. In this situation, the positivity of the special value of the L-function
follows. Ome can view this question as a generalization of the problem of
computing the Tamagawa number. This is our motivation for investigating in
detail the present situation.

We proceed as follows. We introduce the matrices

0 R !

It will be more convenient to consider instead the distributions
He(f) = / Kf(tl,tQ)Q(tth)_ldtldtQ,
(Z(Fa)T(F)\T(Fy))?

and, for o an automorphic representation of G,

Gg(f) = Kf,g(tl,tQ)Q(tth)_ldtldtQ.

/(Z(FA)T(F)\T(l[‘k)2
Thus
Jo(f) = b5 (p(we)f)

and likewise for J.. We will decompose explicitly 6, into a product over all
places vy of F' of local distributions 0%0.

To that end, we compute the geometric expression for 0. (f). A set of rep-
resentatives for the double cosets of T'(F') in G(F') is given by the matrices:

(0 () serme

We define orbital integrals. For ¢ # 1 in Norm(E*)e we write ¢ = 3¢ and
set:

) nen=[[#n(’] 5 )ejewsana.

Note that the right hand side of the integral depends only on Bfe, which
justifies the notations. In addition, we define

() oo )= [ 1[n(] §)]awan,
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