Bull. Soc. math. France **129** (1), 2001, p. 33–90

POSITIVITY OF QUADRATIC BASE CHANGE *L*-FUNCTIONS

BY HERVÉ JACQUET & CHEN NAN

ABSTRACT. — We show that certain quadratic base change L-functions for Gl(2) are non-negative at their center of symmetry.

Résumé (Positivité des fonctions L du changement de base quadratique) On montre que certaines des fonctions L de Gl(2) obtenues par changement de base quadratique sont positives en leur centre de symétrie.

Contents

1. The main theorem	34
2. Choice of measures and local matching	42
3. Global matching	47
4. Factorization of Θ_{Π} over E	49
5. Local comparisons	54
6. Global comparison	68
7. Concluding remarks	69
8. Appendix : Continuous spectrum over E	70
9. Appendix : Continuous spectrum over F	87
Bibliography	88

Texte reçu le 23 septembre 1999, révisé le 1er mars 2000

HERVÉ JACQUET, Department of Mathematics, Columbia University, 2990 Boradway, MC 4408, New York, NY 10027 (USA) • *E-mail* : hj@math.columbia.edu

CHEN NAN, Department of Mathematics, Columbia University, 2990 Broadway, New York, NY 10027 (USA) • E-mail:nanchen@math.columbia.edu

2000 Mathematics Subject Classification. — 11F67, 11F70, 11F72, 22E55.

Key words and phrases. — L-functions, positivity, quadratic base change.

H.J.: Partially supported by NSF Grant DMS 9619766.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE © Société Mathématique de France 0037-9484/2001/33/\$ 5.00

1. The main theorem

Let E/F be a quadratic extension of number fields and $\eta_{E/F}$ or simply η the quadratic character of F attached to E, $\{1, \tau\}$ the Galois group of E/F. We will often write

 $\tau(z) = \overline{z}.$

We will denote by U_1 the unitary group in one variable, that is, the group of elements of norm 1 in E^{\times} . Suppose that π is an automorphic cuspidal representation of $\operatorname{Gl}(2, F_{\mathbb{A}})$ whose central character ω is trivial on the group of norms. In other words $\omega = 1$ or $\omega = \eta$. We assume that π is not dihedral with respect to E so that the base change representation Π of π to $\operatorname{Gl}(2, E)$ is still automorphic and cuspidal. Let Ω be an idele class character of E whose restriction to $F_{\mathbb{A}}^{\times}$ is equal to ω . Our main result is the following theorem:

THEOREM 1. — With the previous notations: $L(\frac{1}{2}, \Pi \otimes \Omega^{-1}) \ge 0$.

If $\omega = 1$ and $\Omega = 1$ then $L(s, \Pi) = L(s, \pi)L(s, \pi \otimes \eta)$ and the result has been established by Guo (see [G1], under some restrictions on E/F). As a matter of fact, by using results on averages of *L*-functions (see [FH]), Guo is able to prove that $L(\frac{1}{2}, \pi) \ge 0$, which then implies our result for $\omega = 1$, $\Omega = 1$, without restriction on E/F. At any rate, Baruch and Mao [BM] have independently established that $L(\frac{1}{2}, \pi) \ge 0$ if $\omega = 1$. However, the present result–where Ω needs not be trivial–is more general, even in the case $\omega = 1$.

Results on the positivity of Gl(2) *L*-functions have been considered by many mathematicians (see, for instance, [BFH], [Gr], [K], [Kk], [KS], [KZ], [S], [S], [S], [W3], [Ya]). Specially, the positivity of the twisted *L*-function at hand has been investigated (for holomorphic forms) in [GZ].

We note that $\Omega^{\tau} = \Omega^{-1}$ and Π is self-contragredient: $\Pi = \Pi$. Thus

$$L(s,\Pi\otimes\Omega^{-1})=L(s,\Pi^{\tau}\otimes(\Omega^{-1})^{\tau})=L(s,\Pi\otimes\Omega)=L(s,\widetilde{\Pi}\otimes\Omega).$$

Likewise,

$$\epsilon(s,\Pi\otimes\Omega^{-1})\epsilon(1-s,\Pi\otimes\Omega^{-1})=\epsilon(s,\Pi\otimes\Omega^{-1})\epsilon(1-s,\widetilde{\Pi}\otimes\Omega)=1.$$

In particular $\epsilon(\frac{1}{2}, \Pi \otimes \Omega^{-1}) = \pm 1$. Thus, despite the fact that $\Pi \otimes \Omega^{-1}$ is not necessarily self-contragredient, the *L*-function $L(s, \Pi \otimes \Omega^{-1})$ is symmetric:

$$L(s, \Pi \otimes \Omega^{-1}) = \epsilon(s, \Pi \otimes \Omega^{-1})L(1-s, \Pi \otimes \Omega^{-1}).$$

The following lemma is easily verified:

LEMMA 1. — Let v_0 be a place of F. If v_0 is inert and v is the corresponding place of E then:

$$L\left(\frac{1}{2}, \Pi_v \otimes \Omega_v^{-1}\right) > 0$$

If v_0 splits into v_1 and v_2 then:

$$L\left(\frac{1}{2}, \Pi_{v_1} \otimes \Omega_{v_1}^{-1}\right) L\left(\frac{1}{2}, \Pi_{v_2} \otimes \Omega_{v_2}^{-1}\right) > 0.$$

tome $129 - 2001 - n^{o} 1$

Let S_0 be a finite set of places of F and S the corresponding set of places of E. Set

$$L^{S}(s, \Pi \otimes \Omega^{-1}) = \prod_{v \notin S} L(s, \Pi_{v} \otimes \Omega_{v}^{-1}).$$

In view of the lemma, the statement of the theorem is equivalent to the positivity of $L^{S}(\frac{1}{2}, \Pi \otimes \Omega^{-1})$.

If Π is dihedral with respect to E, then Π is associated with an idele class character Ξ of E whose restriction to $F_{\mathbb{A}}^{\times}$ is $\omega\eta$. Thus $\Xi^{\tau} = \Xi^{-1}$ and

$$L(s, \Pi \otimes \Omega^{-1}) = L(s, \Xi \Omega^{-1})L(s, \Xi^{\tau} \Omega^{-1}) = L(s, \Xi \Omega^{-1})L(s, \Xi^{-1} \Omega^{-1}).$$

If Ω is trivial or even quadratic this is ≥ 0 . At any rate, in general, $\Xi \Omega^{-1}$ and $\Xi^{-1}\Omega^{-1}$ have η for restriction to $F_{\mathbb{A}}^{\times}$. Thus there are cuspidal representations π_1 and π_2 of $\operatorname{Gl}(2, F_{\mathbb{A}}^{\times})$ with trivial central character such that:

$$L(s, \Xi \Omega^{-1}) = L(s, \pi_1), L(s, \Xi^{-1} \Omega^{-1}) = L(s, \pi_2)$$

and by the results already quoted each factor is ≥ 0 at $s = \frac{1}{2}$. We will not discuss this case but remark that, by considering the discrete but non-cuspidal terms in our trace formula, we could probably handle this case as well.

The proof of the theorem is based on a careful analysis of the relative trace formula of [J2] (In the case $\Omega = 1$ we could, like Guo, use the simpler trace formula of [J1].) Namely, we consider an inner form G of Gl(2, F) which contains a torus T isomorphic to E^{\times} . There is then an $\epsilon \in F^{\times}$, uniquely determined modulo Norm (E^{\times}) , such that the pair (G, T) is isomorphic to the pair (G_{ϵ}, T) defined as follows. We denote by \mathbb{H}_{ϵ} the semi-simple algebra of matrices $g \in M(2, E)$ of the form

(1)
$$g = \begin{pmatrix} a & \epsilon b \\ \overline{b} & \overline{a} \end{pmatrix}$$

and by G_{ϵ} its multiplicative group. Then

$$T = \left\{ t = \left(\begin{matrix} a & 0 \\ 0 & \overline{a} \end{matrix} \right) \right\}.$$

We let Z be the center of G_{ϵ} . We regard Ω as a character of $T(F_{\mathbb{A}})$: $t \mapsto \Omega(a)$. Suppose that f is a smooth function of compact support on $G_{\epsilon}(F_{\mathbb{A}})$. We form as usual a kernel

$$K_f(x,y) := \int_{Z(F_{\mathbb{A}})/F^{\times}} \sum_{\xi \in G_{\epsilon}(F)} f(x^{-1}z\xi y) \,\omega(z) \mathrm{d}z$$

and a distribution

$$J_{\epsilon}(f) := \int_{(Z(F_{\mathbb{A}})T(F)\setminus T(F_{\mathbb{A}}))^2} K_f(t_1, t_2) \,\Omega(t_1)^{-1} \mathrm{d}t_1 \,\Omega(t_2) \mathrm{d}t_2.$$

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE

We have a spectral decomposition of the kernel:

$$K_f = \sum_{\sigma} K_{f,\sigma} + K_{f,\text{cont}};$$

the sum on the right is over all irreducible (cuspidal) automorphic representations σ of G_{ϵ} : if G_{ϵ} is not split, by cuspidal we mean an irreducible automorphic representation which is not one-dimensional. The term $K_{f,\text{cont}}$ represents the contribution of the one dimensional representations and the continuous spectrum which is present only if G_{ϵ} is split, that is, ϵ is a norm. For every σ the kernel $K_{f,\sigma}$ is defined by

$$K_{f,\sigma}(x,y) = \sum_{\phi} \rho(f)\phi(x)\overline{\phi(y)},$$

the sum over an orthonormal basis of the space of σ . We define then:

$$J_{\sigma}(f) := \int_{(Z(F_{\mathbb{A}})T(F)\setminus T(F_{\mathbb{A}}))^2} K_{f,\sigma}(t_1,t_2) \,\Omega(t_1)^{-1} \mathrm{d}t_1 \,\Omega(t_2) \mathrm{d}t_2$$

This is a distribution of positive type: if $f = f_1 * f_1^*$ where $f_1^*(g) := \overline{f}_1(g^{-1})$ then

$$J_{\sigma}(f) = \sum \nu(\rho(f_1)\phi) \overline{\nu(\rho(f_1)\phi)},$$

where we have set

(2)
$$\nu(\phi) := \int_{Z(F_{\mathbb{A}})T(F)\setminus T(F_{\mathbb{A}})} \phi(t)\Omega(t)^{-1} \mathrm{d}t;$$

thus $J_{\sigma}(f) \geq 0$. Moreover, if ν is not identically zero on the space of σ , or as we shall say, if σ is *distinguished* by (T, Ω) , then every local component σ_{v_0} is *distinguished* by (T_{v_0}, Ω_{v_0}) , that is, admits a non-zero continuous linear form ν_{v_0} such that $\nu_{v_0}(\pi_{v_0}(t)u) = \Omega_{v_0}(t)\nu_{v_0}(u)$ for all $t \in T_{v_0}$ and all smooth vectors u. The dimension of the space of such linear forms is one. One can then define a local distribution

$$J_{\sigma_{v_0}}(f_{v_0}) = \sum \nu_{v_0} \left(\rho(f_{v_0}) u \right) \overline{\nu_{v_0}(u)},$$

the sum over an orthonormal basis. The distribution $J_{\sigma_{v_0}}$ is defined within a positive factor. It is of positive type. Normalizing in an appropriate way we get

(3)
$$J_{\sigma}(f) = C(\sigma) \prod_{v_0} J_{v_0}(f_{v_0}).$$

where the constant $C(\sigma)$ is positive. Assuming that $L(\frac{1}{2}, \Pi \otimes \Omega^{-1}) \neq 0$ we can find an ϵ such that there is an automorphic representation σ of G_{ϵ} corresponding to π and distinguished by (T, Ω) (see [J2], [W4]). Another goal of the paper is to obtain an *explicit* decomposition of the above form, with a specific normalization (Theorem 2). The crux of the matter is then to show that $C(\sigma)$ is essentially equal to $L(\frac{1}{2}, \Pi \otimes \Omega^{-1})$ which gives the positivity result. Possibly, this can be used to provide lower bounds for $L(\frac{1}{2}, \Pi \otimes \Omega^{-1})$.

36

томе 129 – 2001 – N^o 1

We note that if ϵ exists then it is unique. Indeed, this follows at once from the following local fact: if v_0 is inert, ϵ not a norm at v_0 , π is a square integrable representation of $\text{Gl}(2, F_{v_0})$, and σ the representation of $G_{\epsilon}(F_{v_0})$ corresponding to π then π and σ cannot be both distinguished by (T_{v_0}, Ω_{v_0}) (see [W4]).

We stress that there is no direct way to compute the constant $C(\sigma)$ because there is no direct relation between the global linear form ν and the local linear forms ν_{v_0} . The situation at hand (a globally defined distribution of positive type decomposed as a product over all places of F of local distributions of positive type, times the appropriate special values of L-functions) is, conjecturally, quite general. In this situation, the positivity of the special value of the L-function follows. One can view this question as a generalization of the problem of computing the Tamagawa number. This is our motivation for investigating in detail the present situation.

We proceed as follows. We introduce the matrices

(4)
$$w = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad w_{\epsilon} = \begin{pmatrix} 0 & \epsilon \\ 1 & 0 \end{pmatrix}$$

It will be more convenient to consider instead the distributions

$$\theta_{\epsilon}(f) := \int_{(Z(F_{\mathbb{A}})T(F)\setminus T(F_{\mathbb{A}}))^2} K_f(t_1, t_2) \,\Omega(t_1 t_2)^{-1} \mathrm{d}t_1 \mathrm{d}t_2,$$

and, for σ an automorphic representation of G_{ϵ} ,

$$\theta_{\sigma}(f) := \int_{(Z(F_{\mathbb{A}})T(F)\setminus T(F_{\mathbb{A}})^2} K_{f,\sigma}(t_1,t_2) \,\Omega(t_1t_2)^{-1} \mathrm{d}t_1 \mathrm{d}t_2.$$

Thus

$$J_{\sigma}(f) = \theta_{\sigma}(\rho(w_{\epsilon})f)$$

and likewise for J_{ϵ} . We will decompose explicitly θ_{σ} into a product over all places v_0 of F of local distributions $\theta_{\sigma_{v_0}}$.

To that end, we compute the geometric expression for $\theta_{\epsilon}(f)$. A set of representatives for the double cosets of T(F) in $G_{\epsilon}(F)$ is given by the matrices:

$$\mathbf{1}_{2}, \quad \begin{pmatrix} 0 & \epsilon \\ 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} \frac{1}{\beta} & \epsilon \beta \\ \frac{\beta}{\beta} & 1 \end{pmatrix}, \quad \beta \in E^{\times}/U_{1}(F).$$

We define orbital integrals. For $\xi \neq 1$ in Norm $(E^{\times})\epsilon$ we write $\xi = \beta \overline{\beta} \epsilon$ and set:

(5)
$$H(\xi;f) = \iint f \left[t_1 \begin{pmatrix} \beta^{-1} & \epsilon \\ 1 & \overline{\beta}^{-1} \end{pmatrix} t_2 \right] \Omega(t_1 t_2^{-1}) \mathrm{d} t_1 \mathrm{d} t_2.$$

Note that the right hand side of the integral depends only on $\beta \overline{\beta} \epsilon$, which justifies the notations. In addition, we define

(6)
$$H(\infty; f) := \int f \Big[t_1 \begin{pmatrix} 0 & \epsilon \\ 1 & 0 \end{pmatrix} \Big] \Omega(t_1) dt_1,$$

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE