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POLYNOMIAL DECAY OF CORRELATIONS FOR A
CLASS OF SMOOTH FLOWS ON THE TWO TORUS

by Bassam Fayad

Abstract. — Kočergin introduced in 1975 a class of smooth flows on the two torus
that are mixing. When these flows have one fixed point, they can be viewed as special
flows over an irrational rotation of the circle, with a ceiling function having a power-
like singularity. Under a Diophantine condition on the rotation’s angle, we prove that
the special flows actually have a t−η-speed of mixing, for some η > 0.

Résumé (Décroissance polynomiale des corrélations pour une classe de flots lisses
sur T2)

Kočergin a introduit en 1975 une classe de flots C∞ sur le tore à deux dimensions
qui sont mélangeants. Quand ces flots ont un seul point fixe, ils correspondent à des flots
spéciaux au-dessus d’une rotation irrationnelle du cercle, dont la fonction de suspension
présente une singularité en puissance fractionnaire. Sous une condition diophantienne
sur l’angle de la rotation, on prouve que ces flots spéciaux ont une vitesse de mélange
en t−η , pour un certain η > 0.

1. Introduction

1.1. Kočergin gave in [5], examples of C∞ measure-preserving flows on the
two torus that are mixing. He starts by proving that special flows over irra-
tional rotations of the circle (or over interval exchange transformations) with
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a ceiling function having a power-like singularity are mixing. It is possible to
identify these special flows with smooth flows on the two torus, having one fixed
point or more. In the same article, Kočergin describes in some examples how
to realize this identification by smoothly gluing to an irrational flow Rt(1,α) a
small neighborhood of the fixed point of an adequatly chosen Hamiltonian flow
in the plane. We will prove that under a Diophantine condition on the rota-
tion number, the special flow has a polynomial decay of correlations between
rectangles. We will see later why the arithmetical condition is required.

1.2. First we give the definition of a special flow over an irrational rotation.
Given a strictly positive function ϕ ∈ L1(T1), the special flow constructed
over Rα and under the function ϕ is the quotient flow of the action

T
1 × R −→ T

1 × R,

(x, s) −→ (x, s + t),

by the relation (
x, s + ϕ(x)

)
∼

(
Rα(x), s

)
.

This flow acts on the space

MRα,ϕ = T
1 × R/ ∼,

is uniquely ergodic and preserves the normalized Lebesgue measure on MRα,ϕ,
i.e. the product of the Haar measure on the basis T

1 with the Lebesgue measure
on the fibers divided by the constant

∫
T1 ϕ(x)dx. In the sequel, we will simply

denote by M the space MRα,ϕ, and by µ the invariant measure described above.

We call rectangles in M the sets

B =
t0+�⋃
t=t0

T t(I),

when the union is disjoint and I is an interval of T
1, t0 ∈ R and � ∈ R

∗
+.

It is immediate that the collection of rectangles generates the σ-algebra
of Borel sets on M . There is of course a slight abuse in calling rectangles
the latter sets, because under the action of the flow, when t0 or � are large,
they get distorted and do not have rectangular shapes anymore. Nevertheless,
when t0 = 0 and � ≤ infT1 ϕ, we have real rectangles that we call rectangles on
the basis.

1.3. Description of the flow under consideration. — In what follows we
will consider the special flow {T t} constructed over an irrational rotation Rα,
and under a ceiling function ϕ.

We assume the following hypothesis on ϕ:
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• ϕ ∈ C3(T/{0}), and infT1 ϕ = c > 0;

• there exists 0 < γ < 1 such that

lim
x→0+

ϕ(x)
x−γ

= 1, lim
x→0−

ϕ(x)
(−x)−γ = 1,

lim
x→0+

ϕ′(x)
−γx−γ−1

= 1, lim
x→0−

ϕ′(x)
γ(−x)−γ−1 = 1,

lim
x→0+

ϕ′′(x)
γ(γ + 1)x−γ−2

= 1, lim
x→0−

ϕ′′(x)
γ(γ + 1)(−x)−γ−2 = 1.

For commodity, we will also suppose that
∫

T1 ϕ(x)dx = 1.

It follows from Kočergin’s result that these special flows, for any α and any
γ ∈ ]0, 1[, are mixing. But to force estimates on the decay of correlations, our
techniques require that the exponent should be at least less than 1

2 , and we will
assume γ ≤ 2

5 .

Remark. — The exponent obtained in one of the smooth examples given by
Kočergin is γ = 1

3 < 2
5 .

As for the rotation number α, we require that the sequence {qn}n∈N
of

denominators of its convergents satisfies for some positive constant Cα

(CD-ε) qn+1 ≤ Cαqn
1+ε,

where ε is small compared to γ, ε = 1
100γ being enough for our purpose.

Finally, we introduce the number

η :=
1
50

γ.

In the sequel, we will often use the fact that 2ε ≤ η 	 γ.

1.4. Statement. — Under the above assumptions on α and ϕ, we will show
the following:

Theorem 1.1. — For any two rectangles A and B, for any η0 < η, we have
for t large enough

∣∣µ(A ∩ T−tB) − µ(A)µ(B)
∣∣ ≤ 1

tη0
·(1)

In the statement, the rectangles and the measure µ are as defined in (1.2).
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1.5. Remarks. — For a fixed ε > 0, the set of rotation numbers satisfying a
Diophantine condition (CD-ε) is of total Lebesgue measure.

To simplify the presentation we considered only one power-like and symmet-
rical singularity

ϕ(x)∼
0
ϕ(−x)∼

0
|x|−γ .

From the proof it will appear clearly that the same result holds when there
are finitely many singularities, and not all of them being necessarily power-like
(some of them could be logarithmic for example), under the condition that the
strongest one should be power-like (with exponent γ ≤ 2

5 ). Furthermore, our
assumption of symmetry is not necessary, to the contrary, symmetry plays in
general against mixing. When the singularity is logarithmic for example, the
symmetry impedes mixing as proved by Kočergin in [4]; while Khanin and Sinai
proved mixing in the case of asymmetrical logarithmic singularities [3].

Our estimates are far from optimal and η = γ
50 is certainly not the best

polynomial rate of decay one can obtain. A faster speed of mixing than t−
1
2−ε

would be very interesting because it would imply a Lebesgue spectrum for the
flow. But since it appeared very hard to obtain faster decay than t−

1
2 by the

techniques involved in this paper we wrote the proof with the above η = γ
50 .

Correlations between functions. — Through the proof of the theorem, it will
appear that (1) is valid when t ∈ [qn, qn+1], n sufficiently large, for any pair of
squares A and B with side of length equal to q−η

n . Hence we could establish
for any couple of complex functions of class C1 on T

2, the same decay of
correlations obtained for rectangles.

1.6. Plan of the proof. — The property underlying mixing for a special
flow over a rigid transformation is the uniform stretch of the Birkhoff sums of
the ceiling function,

ϕm(x) := ϕ(x) + ϕ
(
Rα(x)

)
+ · · ·+ ϕ

(
Rm−1

α (x)
)
.

When the Birkhoff sums have large derivatives, the image of a small interval J ∈
T
1 by the flow is stretched with time in the vertical direction along the fibers,

and as t tends to infinity the interval actually breaks down into a lot of almost
vertical curves whose projections on the circle follow the trajectory of Rα.
By unique ergodicity of the rotation these projections become more uniformly
distributed on the circle as their number increases, and so will be T t(J) in the
whole space (see [6], [5], [3], [2] and [1]).

For each t, we want to cover the circle excepted a small set with intervals
being stretched as described above (here, we want the exceptional set to have
measure less than t−η). The first intervals to be over ruled are those that
come too close to the singularity before time t and eventually get trapped in its
neighborhood (Lemma 2.3). Other intervals must be automatically discarded,
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those where there is no stretch at all, i.e. where the first derivative of ϕm is
small (the singularity being symmetric this likely occurs): a lower bound on
the second derivatives due to the convex average behavior of ϕ will allow us to
estimate the size of such bad intervals (Lemma 2.5 and Step 2 in Section 3.1).

For the remaining part of the circle, we seek a good control on the stretch
of ϕm, when m is comparable with t, and here the Diophantine condition on α
is required to insure the uniformity of stretch (Lemmas 2.4 and 2.5). Still,
uniform stretch (Properties (P1)–(P2′) in (3.1)) of an interval J is not enough
by itself to estimate the asymptotic repartition of T t(J) in the space as t
goes to infinity. We need in addition to make sure that the pieces of T t(J)
(those almost vertical curves) do not enter in a too small neighborhood of the
singularity, otherwise a lot of measure can be lost there (See (2.4)).

A “good” partition is finally constructed for each time t (Proposition 3.1)
and Lemmas 3.3 and 3.2 give a precise description of T t(J), for an interval J
in this partition.

To conclude, we need a good estimate on the asymptotic distribution of
the trajectories of the rotation on the circle that we obtain using again the
Diophantine condition on α.

2. Preliminary estimates and lemmas

2.1. A Fubini Lemma. — We begin by a Fubini lemma that reduces our
problem to studying the image under the special flow of intervals on its basis T

1.
Given ν > 0 and a finite partial partition P = {I0, ..., Im} of T

1, we say
that P is ν-fine if, for any interval I on the circle, there exists a collection of
atoms from P such that the symmetrical difference between their union and I
has Lebesgue measure less than ν.

We recall that a rectangle on the basis is a subset B =
⋃

0≤t≤� T
t(I), where

I is an interval of T
1 and � ∈ R

∗
+ is the height of B. We also recall that η is

the fixed number 1
50γ (2ε ≤ η 	 γ ≤ 2

5 ).

Lemma 2.1. — If there exist partial partitions of T
1, Pt, that are t−η-fine and

such that for any rectangle B on the basis with height less than c = infT1 ϕ, we
have when t is large enough

∣∣λ(J (t)
i ∩ T−tB)− λ(J (t)

i )µ(B)
∣∣ ≤ t−ηλ(J (t)

i ),(2)

for every J
(t)
i ∈ Pt, then Theorem 1.1 is true.

In the statement of the Lemma, λ is the Haar measure on the circle and µ
is the normalized measure on M invariant by the special flow.
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