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A MEAN-VALUE LEMMA AND APPLICATIONS

by Alessandro Savo

Abstract. — We control the gap between the mean value of a function on a subman-
ifold (or a point), and its mean value on any tube around the submanifold (in fact,

we give the exact value of the second derivative of the gap). We apply this formula
to obtain comparison theorems between eigenvalues of the Laplace-Beltrami operator,
and then to compute the first three terms of the asymptotic time-expansion of a heat
diffusion process on convex polyhedrons in euclidean spaces of arbitrary dimension.
We also write explicit bounds for the remainder term of the above expansion, which
hold for all values of time. The results of this paper have been announced, without
proof, in [16].
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BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE 0037-9484/2001/505/$ 5.00
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Résumé (Un lemme de valeur moyenne et quelques applications)
On contrôle l’écart entre la valeur moyenne d’une fonction sur une sous-variété

d’une variété riemannienne, et sa valeur moyenne sur un voisinage tubulaire autour
de la sous-variété (on donne, en effet, la valeur exacte de la dérivée seconde de cet
écart). On applique ensuite cette formule afin d’obtenir des théorèmes de comparaison
pour les valeurs propres et les fonctions propres de l’opérateur de Laplace-Beltrami,
et pour calculer les trois premiers termes du développement asymptotique relatif à
un problème de diffusion de la chaleur sur les polyèdres convexes dans un espace
euclidien de dimension quelconque. On donne enfin des bornes explicites des restes du
développement susdit, qui sont valable pour toute valeur du temps. Les résultats de
cet article ont été annoncés (sans démonstrations) dans [16].
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1. Introduction

Section 2 contains the technical background of the paper. Let N be a com-
pact, piecewise-smooth submanifold of the complete, n-dimensional Rieman-
nian manifold M . The tube of radius r around N is the set

M(r) =
{
x ∈M : ρ(x) < r

}
,

where ρ is the distance function from N . Given a function u on M , our aim is
to describe, in Theorem 2.5, the second derivative of the function

F (r) =
∫
M(r)

udvn

where r > 0, and where dvn is the volume form on M given by the metric.
This is equivalent to estimate

F (r)
vol(M(r))

−
∫
N

u,
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and thus it may be seen as a generalization of the classical mean-value lemma,
which says that, when M is the euclidean space and N = {x0}, any harmonic
function satisfies F (r)/vol(M(r)) = u(x0) for all r.

For an arbitrary function u, it turns out that the second derivative of F
involves the Laplacian of u, as well as the Laplacian of the distance function ρ.
Now, if we stay within the injectivity radius of N , i.e. if we stay away from the
cut-locus of N in M , both ρ and F will be smooth functions (of x ∈ M and r
respectively); however, the nature of the problems we intend to investigate
(which include the piecewise-smooth case) forced us to take into account also
the points of the cut-locus, and then to consider F (r) as a singular function on
the whole half-line.

Due to the cut-locus, both F and ρ are only Lipschitz regular, and their
Laplacians must therefore be taken in the sense of distributions. Hence, our first
preoccupation will be to describe, in Lemma 2.1, the distributional Laplacian
of the distance function, and to show that it decomposes in a regular part ∆regρ
(an L1

loc-function on M), and a singular part, which is in turn the sum of a
positive Radon measure ∆Cutρ, supported on the cut-locus of N , and the Dirac
measure −2δN , supported on the submanifold N and vanishing when N has
codimension greater than 1.

As a preparatory step, we prove a version of Green’s theorem for the (gener-
ally singular) tubesM(r) (Proposition 2.3); and we then proceed with the proof
of the main technical lemma, called the Mean-value Lemma (see Theorem 2.5):

(1) −F ′′(r) =
∫
M(r)

∆udvn + ρ∗(u∆ρ)(r),

where ρ∗ is the operator of push-forward on distributions, which is dual to the
pull-back operator ρ∗. (If r = ρ(x) is smaller than the injectivity radius of N ,
then ∆ρ is smooth at x, and gives the trace of the second fundamental form
of the hypersurface ρ−1(r) at x; in that case, ρ∗(u∆ρ)(r) =

∫
ρ−1(r) u∆ρ, the

integration being performed with respect to the induced measure on ρ−1(r)).
Section 3 deals with the applications of Theorem 2.5 to eigenvalue estimates.

Some of the results exposed here are already known, but the proofs we provide
are, we believe, new, and we have chosen to include them to show the usefulness
of our approach, which gives a simple unified proof of all these results. So let
us select an eigenfunction u of the Laplace-Beltrami operator,

∆u = λu,

and let

F (r) =
∫
M(r)

u.

Theorem 2.5 becomes the following statement:

(2) −F ′′ = λF + ρ∗(u∆ρ).
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If u is harmonic, and if all the geodesic spheres of M around x0 have constant
mean curvature (in particular, if M is a manifold of revolution around x0, or
if M is a symmetric space) then one can immediately re-derive the “classical
mean-value lemma”by applying (2) in the case where ρ is the distance from x0.

The basic idea in the use of equation (2) is that it is possible to bound
from below the distribution ∆ρ by an explicit radial function on M (that is,
a function which depends only on the distance from N), if one assumes in
addition a lower bound of the Ricci curvature on M . Then we derive from (2)
a second order differential inequality in F , which can be studied by standard
comparison arguments. We explicitly carry out the idea in the following two
cases: when ρ is the distance from a point, and when ρ is the distance from the
boundary of a domain.

Let us apply principle (2) when N = {x0}. Assume that Ricci ≥ (n− 1)K,
where K is any real number. Let B(x0, R) (resp. B(R)) be a geodesic ball
of radius R in M (resp. in the simply connected manifold MK of constant
curvature K). We then obtain, in Theorem 3.1, for any positive solution of

∆u ≥ λu on B(x0, R)

(resp. for any positive solution of ∆ū = λū on B(R)), the following inequality∫
∂B(x0,r)

u∫
B(x0,r)

u
≤

∫
∂B(r)

ū∫
B(r) ū

for all 0 < r < R. Theorem 3.1 reduces to the classical Bishop-Gromov inequal-
ity if u = ū = 1. Notice that R is not assumed to be smaller than the injectivity
radius of x0, so that the above inequality extends beyond the cut-locus of x0.

We observe two consequences of Theorem 3.1: the first (Corollary 3.3), states
that if u is a positive superharmonic function on B(x0, R), then, for 0 < r < R,
we have

u(x0) ≥
1

vol∂B(r)

∫
∂B(x0,R)

u,

and the second (Theorem 3.4) is a well-known inequality of Cheng’s regarding
the first eigenvalues of the Dirichlet Laplacian on open balls in M and M re-
spectively: λ1(B(R)) ≤ λ1(B(R)) which is proved in [6], by different methods.

In the second part of Section 3, we use equation (1) in the case where ρ is
the distance function from the boundary of a domain Ω in M . We assume a
lower bound η̄ for the mean curvature of ∂Ω, a lower bound (n − 1)K for the
Ricci curvature of ∂Ω, and we denote by R the inner radius of Ω (that is, the
radius of the biggest ball that fits into Ω). We then consider the “symmetrized”
domain Ω corresponding to the data η̄, K,R: it will be the cylinder of constant
curvature K, and width R, having constant mean curvature equal to η̄ on
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one, say Γ, of the two connected components of the boundary. We then show,
in Theorem 3.6, that

λ1(Ω) ≥ λ1(Ω)
where λ1(Ω) is the first eigenvalue of the Dirichlet problem on Ω, and λ1(Ω) is
the first eigenvalue of the following mixed problem on Ω: Dirichlet condition
on the component Γ, Neumann condition on the other. The result extends
to any domain with piecewise-smooth boundary satisfying an additional prop-
erty (see Property (P), before Lemma 3.5), and should be compared with the
corresponding result obtained by Kasue [13], by different methods. In the spe-
cial case η̄ = 0, K = 0, Theorem 3.6 reduces to the well-known inequality
λ1(Ω) ≥ π2/4R2, due to Li and Yau (see [15], Theorem 11).

Section 4 deals with the applications of the Mean-Value Lemma to heat
diffusion. We fix a domain Ω (we assume ∂Ω piecewise-smooth), and we fix
the solution u(t, x) of the heat equation on Ω satisfying Dirichlet boundary
conditions, and having unit initial conditions (u(0, x) = 1 for all x ∈ Ω). We
call u(t, x) the temperature function of Ω. Integrating it over Ω, we obtain the
heat content function H(t):

H(t) =
∫
Ω

u(t, x)dx.

The function H(t) has been the object of investigation by a number of au-
thors (see [1], [2], [3]); its importance lies also in the fact that, if one denotes
by k(t, x, y) the heat kernel of the domain Ω relative to Dirichlet boundary
conditions, H(t) is the integral on Ω×Ω of k(t, · , ·) with respect to the product
measure.

Our basic idea in dealing with H(t) is to introduce an auxiliary variable
r ≥ 0, and then consider the map

H(t, r) =
∫
Ω(r)

u(t, x)dx,

where
Ω(r) =

{
x ∈ Ω : d(x, ∂Ω) > r

}
are the parallel domains of Ω. By the Mean-value Lemma, applied for N = ∂Ω,
we immediately obtain that H(t, r) satisfies a heat equation on the half-line
(0,∞), of the type (

− ∂2

∂r2
+
∂

∂t

)
H = −ρ∗

(
u(t, ·)∆ρ

)
.

The main advantage of the method is that it reduces the problem to a
one-dimensional one, where all computations can be performed explicitly: in
fact, using Duhamel principle (Lemma 4.1), we can represent the heat content
H(t) in terms of the measure ρ∗((1− u(t, ·))∆ρ) and in terms of the Neumann
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