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PROOF OF NADEL’S CONJECTURE AND
DIRECT IMAGE FOR RELATIVE K-THEORY

by Alain Berthomieu

Abstract. — A“relative”K-theory group for holomorphic or algebraic vector bundles
on a compact or quasiprojective complex manifold is constructed, and Chern-Simons
type characteristic classes are defined on this group in the spirit of Nadel. In the
projective case, their coincidence with the Abel-Jacobi image of the Chern classes of
the bundles is proved. Some applications to families of holomorphic bundles are given
and two Riemann-Roch type theorems are proved for these classes.

Résumé (Démonstration d’une conjecture de Nadel et image directe pour la K-théorie
relative)

On construit un groupe de K-théorie relative pour les fibrés holomorphes ou algé-
briques sur une variété complexe compacte ou quasiprojective, et des classes carac-
téristiques de type de Chern-Simons sont définies sur ce groupe dans l’esprit de Nadel.
Dans le cas projectif, on démontre la cöıncidence de ces classes avec l’image par l’appli-
cation d’Abel-Jacobi des classes de Chern des fibrés. On donne quelques applications
aux familles de fibrés holomorphes et on démontre deux théorèmes de type Riemann-
Roch pour ces classes.
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1. Introduction

On a compact complex manifold X , Nadel defined in [35] characteristic
classes à la Chern-Weil with values in the odd Dolbeault cohomology of X for
triples (E, F, f) where E and F are holomorphic vector bundles and f : E

∼→ F
is a C∞ isomorphism. He then conjectured that his classes should cöıncide
with some part of the Abel-Jacobi image of the cycle valued Chern character
(without denominators) of the difference [F ]− [E] ∈ K0(X) (here K0(X) is the
Grothendieck group of algebraic vector bundles modulo exact sequences).

In this paper, Nadel’s theory is widely generalised. Firstly, some relative K-
theory group Krel

0 (X) is constructed (in Section 2) whose elements are equiv-
alence classes of objects (E, F, f) as above; the construction is also valid for
couples of C∞ isomorphic algebraic vector bundles on quasiprojective mani-
folds. Let K1(X) be Quillen’s algebraic K-theory group of the category of
holomorphic (algebraic) vector bundles on X , Krel

0 (X) is then shown to fit in
the exact sequence:

(1) K1(X)
F∗

−−−→ Ktop
1 (X)

ϕ
−−−→ Krel

0 (X)
∂

−−−→ K0(X)
F∗

−−−→ Ktop
0 (X).

Secondly, let Fr(L) (for 1 ≤ r ≤ dimX) be the subspaces of the space ∧(L)(X)
of (logarithmic) C∞ differential forms on X defining the Hodge filtration of the
(logarithmic) de Rham complex of X (see Subsection 3.2, logarithmic forms
correspond to the quasiprojective case). Chern-Simons transgression between
two compatible connexions on E and F is shown (in Section 3) to provide
characteristic class morphisms:

NP : Krel
0 (X) −→ H2•−1(∧(L)(X)/F•(L), d),

MP : Krel
0 (X) −→ H2•−1(∧(L)(X)/F•(L), d),

for an additive or multiplicative invariant polynomial P respectively (in the
second line, the group structure of H2•−1(∧(X)/F•, d) need not be the usual
addition if X is a non Kähler or non compact complex analytic manifold).
In particular for the total Chern class P = ctot

Mctot(E, F, f) = ctot(∇E , f∗∇F ) ∧ c−1
tot(∇2

F ),

where ∇E and ∇F are connexions on E and F compatible with their holomor-
phic (algebraic) structure, c−1

tot(∇2
F ) is the Chern-Weil form calculated from the

curvature of ∇F and ctot(∇E , f∗∇F ) is the Chern-Simons transgression form
on X such that

d ctot(∇E , f∗∇F ) = ctot

(
(f∗∇F )2

)
− ctot(∇2

E).
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Let H2•
D (X, Z(•)) be Hodge-Deligne(-Beilinson) cohomology groups (see Sub-

section 3.2), the class Mctot is proved to fit in the commutative diagram:

(2)

Ktop
1 (X) ϕ−−−−−−→Krel

0 (X) ∂−−−−−−−→ K0(X) F∗−−−−−→ Ktop
0 (X)$ Sctot Mctot

$ c̃tot

$ ctot

$
Hodd(X, Z) ψ−−→H2•−1

(
∧(X)/F•

) ∂H−−−→H2•
D

(
X, Z(•)

) f−−−→Heven(X, Z)

(the second line is a classical exact sequence associated to Hodge-Deligne co-
homology [17], Cor. 2.10 b).

An analogue construction is performed by Karoubi in [28], §6, for flat A-
bundles, where A is a Banach algebra; this could be related to the theory
developped here since the category of vector bundles on X has same algebraic
K-theory groups as the ring of algebraic functions on some affine variety X̃
related to X [26] (see [30], §4.1) but the constructions here are much nearer to
Nadel’s ideas and more adapted to study examples and direct images. However,
Karoubi’s multiplicative K-theory as treated in [30] fits nicely to the theory
developped here as adding an intermediary line in the diagram above (see (29)
below). The reason why higher K-theory is not studied here is that higher
algebraic K-theory groups are difficult to describe explicitly (see [30], §4).

Nadel’s results on his characteristic classes now generalise as follows:

The integrality property (see [35], §§6, 11 and 12) is recovered by the com-
mutativity of the “left” square of the above diagram.

Let Kdef
0 be the subgroup of Krel

0 generated by deformations of holomorphic
vector bundles, (see definition 5.1) and Fr−1H2r−1(∧(X)/Fr) the subgroup of
classes in H2r−1(∧(X)/Fr) represented by differential forms lying in Fr−1, the
rigidity result of Nadel (see [35], §§5, 10 and 12) reads now as follows: the image
of Kdef

0 (X) under NP or MP (for any P ) is included in F•−1H2•−1(∧(X)/F•)
(this equals

⊕
p Hp,p+1(X) if X is compact Kähler), this result allows to precise

Nadel’s “topological monodromy restrictions”; these restrictions are generalised
to higher order topological K-theory groups of X in Remark 5.7 below, and
the rigidity result is generalised in Proposition 5.6 to reprove a statement by
Esnault and Srinivas [16], Prop. 1, about vector bundles with holomorphic con-
nexions.

For 1 ≤ r ≤ dimX , let Jr(X) denote Griffiths’ r-th intermediate jacobian

Jr(X) := H2r−1
(
∧(X)/Fr, d)/ψ(H2r−1(X, Z)

)

define

Khom
0 = Ker (K0

F∗−→ Ktop
0 ) ∼= Krel

0 /ϕ(Ktop
1 )
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and call Kcont
0 the trace of Kdef

0 in Khom
0 . Then any holomorphic bundle on

M × X where M is any pointed complex manifold gives rise to a map

M −→ Kcont
0

Mctot
−−−−→ Jr(X)

this map is proved to be holomorphic in §5.3 below, and its degree one part
is (as Nadel proves it in [35], §9) the classical map M → J1(X) associated
to the determinant line bundle. This leads to the question of the comparison
of this map with the Albanese map of moduli spaces of vector bundles on X .
The examples of abelian surfaces and of the cubic threefold are studied in §§6.5
and 5.3.

For X projective, let CH(X) denote the Chow ring of algebraic cycles in X
modulo rational equivalence, and CHhom(X) its subgroup consisting of cycles
homologically equivalent to zero, i.e. CHhom(X) is the kernel of the cycle map
CH(X) → Heven(X, Z). The Chern isomorphism

K0(X) ⊗ Q ∼= CH(X) ⊗ Q

(induced by the cycle valued Chern character) makes Khom
0 (X)⊗Q correspond

to CHhom(X) ⊗ Q. Let

AJ : CHhom(X) −→
⊕

r

Jr(X)

denote the Abel-Jacobi map (see for example [31], Lecture 12). The conjecture
of Nadel [35], §13, is then a consequence of the following

Theorem 1.1. — If X is projective, the following diagram commutes

Khom
0 (X) ctot−1−−−−→ CHhom(X)

Mctot

$
$AJ

dimX⊕
r=1

Jr(X)
dimX⊕
r=1

Jr(X)

where 1 denotes the unit (of intersection) in the Chow ring CH(X) and ctot is
the cycle valued total Chern class [23].

This result means that Mctot provides an analogue of the Abel-Jacobi map
on Khom

0 (which can be defined on nonprojective manifolds). In particular the
above question about the Albanese map of moduli spaces is closely related to
the conjectural universality of the Abel-Jacobi map as a map from CHhom to
Abelian varieties.

This theorem is proved in Section 4: the compatibility of Chern classes with
the cycle class in Deligne-Beilinson cohomology (see [17], §8), and between the
latter cycle class with the Abel-Jacobi map (see [19], [15], [17], §7.12, [25],
Lemma 1.22 and [21], Thm. 3.5) being granted, this theorem becomes a conse-
quence of the commutativity of the“central”square of diagram (2) above; in fact
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once Nadel’s classes have been recognized to consist of Chern-Simons transgres-
sion forms, the compatibility between Chern classes in Cheeger-Simons charac-
ters and in Hodge-Deligne-Beilinson cohomology as studied by Brylinski [11],
Zucker [39], Karoubi [30] and Gillet-Soulé [21] gives the answer.

Finally in Section 6, direct image questions are considered for relative K-
theory: firstly, a morphism Krel

0 (X) → Krel
0 (Y ) is constructed for any proper

submersion π : X → Y of quasiprojective varieties. This needs resolutions to
the right in Krel

0 (X) by triples (A, B, g) where A and B are π-acyclic in the
sense that Rjπ∗A and Rjπ∗B vanish for all j ≥ 1. A trick from [2] (Prop. 2.2,
see also [3], §9) is then needed to define the direct image of such a (A, B, g)
because the ∂ + ∂∗ operators associated to connexions on A realising some
homotopy between two compatible connexions on A and B respectively need
not have kernels of constant dimension. A Riemann-Roch type theorem for Nch

is then proved in the projective case: it is obtained by “integrating along [0, 1]”
the refinement (at the level of differential forms) of the families index theorem
on X × [0, 1] taken for the ∂ + ∂∗ operator on vector bundles which may be
nonholomorphic. On X × {0} and X × {1} however, the vector bundles are
holomorphic and the double transgression of the families index theorem of
Bismut and Köhler [9] plays a crucial role. This Riemann-Roch theorem is then
applied to recognize the map Mctot in Yoshioka’s construction of the Albanese
map for moduli spaces of vector bundles on Abelian surfaces [38], [37].

Secondly for a closed immersion of projective varieties ι : Y → X , the direct
image morphism is made available only from Kdef

0 (Y ) to Kdef
0 (X); this is be-

cause C∞ isomorphisms do not fit nicely with with resolutions of vector bundles
on Y by vector bundles on X . The Riemann-Roch statement is obtained from
Bismut Gillet and Soulé’s double transgression for immersions [8]. Note that
these Riemann-Roch results are not consequences of the “usual”Riemann-Roch
theorem on Deligne-Beilinson cohomology proved by Gillet [18] because Gillet’s
result cannot take more in consideration than Khom

0 (X) in the case of closed
immersions and Khom

0 (X) ⊗ Q in the general case.
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2. Relative K-theory

Two cases are considered here: X is either a smooth quasiprojective com-
plex manifold or a complex analytic manifold. The results will be stated in
the first case (the second case is deduced by replacing everywhere “algebraic”
by “holomorphic”). In 2.1, the “relative”K-theory group Krel

0 (X) is defined, it
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