
Bull. Soc. math. France
130 (4), 2002, p. 493–506

INVARIANCE OF GLOBAL SOLUTIONS OF THE
HAMILTON-JACOBI EQUATION

by Ezequiel Maderna

Abstract. — We show that every global viscosity solution of the Hamilton-Jacobi
equation associated with a convex and superlinear Hamiltonian on the cotangent bun-
dle of a closed manifold is necessarily invariant under the identity component of the
group of symmetries of the Hamiltonian (we prove that this group is a compact Lie
group). In particular, every Lagrangian section invariant under the Hamiltonian flow
is also invariant under this group.

Résumé (Invariance des solutions globales de l’équation de Hamilton-Jacobi)
On prouve que toute solution globale de viscosité de l’équation de Hamilton-Jacobi

associée à un hamiltonien convexe et superlinéaire sur le fibré cotangent d’une variété
fermée est toujours invariante sous l’action de la composante neutre du groupe de
symétries du hamiltonien (on montre que ce groupe est un groupe de Lie compact).
En particulier, toute section lagrangienne du fibré cotangent qui est preservée par le
flot hamiltonien doit être invariante sous cette action.
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1. Introduction

Let M be a closed manifold, and let H : T ∗M → R be a C∞ Hamiltonian
that is C2-strictly convex and superlinear on the fibers of the cotangent bundle
π∗ : T ∗M →M .

In [3], generalizing work by Lions, Papanicolau & Varadhan, Fathi proved
the existence of global viscosity solutions, also called weak KAM solutions,
of the Hamilton-Jacobi equation

H(x, dxu) = c

and that these solutions only exist for the value c = c(L), which equals Mañé’s
critical value of the associated Lagrangian. The latter can also be characterized
in terms of Mather’s minimizing measures (see [7], [8]). The solutions are given
modulo constants by the fixed points of the Lax-Oleinik semigroups T−

t and T+
t

(see below for the definition of T−
t and T+

t ). Now let S− and S+ be the set of
weak KAM solutions of T−

t and T+
t respectively. One has that S− ∩ S+ = S,

the set of classical solutions of the Hamilton-Jacobi equation, i.e. of class C1.
The weak KAM solutions are very useful in the study of the dynamics of the

Hamiltonian vector field XH associated with H (see also [1], [2]).
We will denote by ΓH the group of diffeomorphisms of M of class C1 that

preserve H , more precisely

ΓH =
{
g ∈ Diff1(M) ; H(g(x), p) = H(x, p ◦ dxg), ∀x ∈M, p ∈ T ∗

g(x)M
}

endowed with the topology of uniform convergence. Let Γ0
H be the identity

component of ΓH . We shall prove in Section 4 that ΓH is a compact Lie group.
In [5], the proof of the existence of weak KAM solutions is generalized to

the case when M is not necesarily compact, with the additional hypothesis of
uniform superlinearity (with respect to a complete Riemannian metric) of the
Hamiltonian and its associated Lagrangian. In [5], we also show the existence
of ΓH -invariant weak KAM solutions for values of the constant greater or equal
than a certain value cinv ≥ c(L). It follows that if M is compact cinv = c(L).
We will prove later these facts in a slightly simplified way using compactness.

On the other hand, if M is not compact the inequality cinv ≥ c(L) could be
strict. This follows from the examples given by G. & M. Paternain [10] on the
universal cover of closed surface of genus 2.

In this paper we show:

Theorem 1. — Let M be a closed manifold, and let H : T ∗M → R be a C∞

Hamiltonian that is convex and superlinear on the fibers of the cotangent bundle
of M . If ΓH is the symmetry group of H, then every weak KAM solution of H
is Γ0

H-invariant, where Γ0
H denote the identity component of ΓH .

In general, Hamiltonians have trivial symmetry groups like general Rieman-
nian metrics which usually have trivial isometry groups. However we find
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Hamiltonian systems with symmetries quite often in the applications, and these
symmetries are very useful for a detailed study of the system. If the dimension
of ΓH is sufficiently large we can find all weak KAM solutions by integration,
as we will see in the case when H is the Hamiltonian of the mechanical system
determined by the motion of a particle on the n-sphere S

n ⊂ R
n+1 under the

effect of a potential U(x) = xn+1. In this case we can reduce the problem to
finding the weak KAM solutions of the pendulum on the circle.

In particular, our result applies to the solutions of the Hamilton-Jacobi equa-
tion of class C2 that correspond to exact Lagrangian sections of T ∗M invariant
under the Hamiltonian flow associated with H . To reduce the study of La-
grangian sections to exact ones, we shall recall in Section 5 that given any
cohomology class in H1(M,R) there exist a closed ΓH -invariant 1-form that
represent the class. Combining this result with theorem 1 we obtain the fol-
lowing corollary whose proof will also be given in Section 5:

Corollary 2. — Every Lagrangian section of T ∗M invariant under the
Hamiltonian flow of H is also invariant under Γ0

H .

2. Weak KAM solutions and Mather’s set

Before giving the proof of Theorem 1, we briefly recall the properties of the
weak KAM solutions which we will use. The details of the proofs can be found
in [3] and [4].

Let us introduce initially the Lagrangian corresponding to H like its convex
dual on the tangent bundle of M :

L : TM −→ R, L(x, v) = sup
{
p(v) −H(x, p) ; p ∈ T ∗

xM
}
.

It is well-known that L is also of C∞ class, strictly convex and superlinear on
the fibers, i.e. its second derivative ∂2L/∂v2 is definite positive everywhere
and for all K ∈ R there exists a constant CK such that

∀(x, v) ∈ TM, L(x, v) ≥ K‖v‖ + CK .

The Legendre transform L : TM → T ∗M ,

L(x, v) =
(
x,
∂L

∂v
(x, v)

)
,

is a diffeomorphism which conjugates the Euler-Lagrange flow defined by L
on M , which is denoted φL

t , with the Hamiltonian flow of H .
The action of L on a piecewise C1 curve γ : [a, b] →M is as usual

AL(γ) =
∫ b

a

L
(
γ(s), γ̇(s)

)
ds.
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We will say that a function u : M → R is dominated by L+ c (for certain value
of c ∈ R) and we will write

u ≺ L+ c

if for each piecewise C1 curve γ : [a, b] →M we have

u
(
γ(b)

)
− u

(
γ(a)

)
≤ AL(γ) + c(b − a).

From the superlinearity of L it is easy to deduce that dominated functions are
Lipschitz, with a Lipschitz constant which only depends, once fixed the metric
on M , on the constant c and the Lagrangian; in particular, in accordance with
the Rademacher’s theorem (see [11]), they are differentiable almost everywhere.

The main reason we are interested in dominated functions is that they con-
stitute a suitable space where Lax-Oleinik’s semigroups of operators can be
studied. In this way, we will obtain weak KAM solutions. Since we already
know that the solutions are dominated by L + c(L), where c(L) is the critical
value of L, we can directly introduce the space

H =
{
u ∈ C0(M,R) ; u ≺ L+ c(L)

}
.

On this space we can define the non linear operators u �→ T−
t u, u �→ T+

t u for
each t ≥ 0

T−
t u(x) = inf

γ∈C−

{
u(γ(0)) +AL(γ)

}
, T+

t u(x) = sup
γ∈C+

{
u(γ(t)) −AL(γ)

}
,

where

C− =
{
γ : [0, t] →M ; piecewise C1 with γ(t) = x

}
,

C+ =
{
γ : [0, t] →M ; piecewise C1 with γ(0) = x

}
.

From the definition it follows the semigroup property

T−
t ◦ T−

s = T−
t+s for all t, s ≥ 0,

and that
T−

t (u+ c) = T−
t (u) + c for all c ∈ R.

On the other hand, it is clear that u + c ∈ H whenever u ∈ H; this allows us
to define the quotient semigroup T̂−

t acting on Ĥ, the quotient set of H by the
space of constant functions, by

T̂−
t [u] = [T−

t u].

Analogously, we can define the quotient semigroup T̂+
t .

Definition 3 (Weak KAM solution). — We say that u ∈ H is a global viscos-
ity solution of the Hamilton-Jacobi equation, or a weak KAM solution, if

T̂−
t [u] = [u] or T̂+

t [u] = [u] for all t ∈ R.

We call S− and S+ respectively the sets defined by the above relations.
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The existence of these solutions is obtained in [3] through the application
of the fixed point theorem of Schauder and Tykhonov; this requires to show
the continuity of the semigroups and the compactness of the convex Ĥ. In the
same article, it is shown that the relations which define S− and S+ sets, are
equivalent to

T−
t u = u− c(L)tQ and T+

t u = u+ c(L)t, ∀t ≥ 0,

and that weak KAM solutions verify the Hamilton-Jacobi equation at every
point where they are differentiable.

Weak KAM solutions are also characterized by the fact of being dominated
by L + c(L) and by the existence of certain curves on which their variation is
maximal; more precisely,

Proposition 4 (Fathi [3]). — A function u : M → R is in S− if and only if:
a) u ≺ L+ c(L), where c(L) is the critical value of L,
b) for all x ∈ M there exists an extremal of L, γx : (−∞, 0] → M with

γx(0) = x, and such that for all t ≥ 0 we have

u(x) − u
(
γx(−t)

)
=

∫ 0

−t

L
(
γx(s), γ̇x(s)

)
ds+ c(L)t.

Moreover, the set of differentiability points of a function satisfying a)
contains the points x ∈ M for which there exists ε > 0 and an extremal
γ : [−ε, ε] →M , such that γ(0) = x and

u
(
γ(ε)

)
− u

(
γ(−ε)

)
=

∫ ε

−ε

L
(
γ(s), γ̇(s)

)
ds + 2ε c(L).

The characterization of the functions in S+ is analogous, it is enough to
replace the curves of the condition b) by curves of the form γx : [0,+∞) →M
with γx(0) = x along which the equality is satisfied.

Let now µ be a Borel measure on TM , invariant under the Euler-Lagrange
flow, and let u : M → R be a (L+c)-dominated function. Because of invariance
of µ we have ∫

TM

(u ◦ π ◦ φL
1 − u ◦ π)dµ = 0,

where π : TM → M is the canonical projection of the tangent bundle. If one
applies for each v ∈ TM , the domination of u by L+c to the curve t �→ π◦φL

s (v)
with t varying in [0, 1], it results from it that

c+
∫

TM

∫ 1

0

L ◦ φL
s dsdµ ≥ 0.
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