Bull. Soc. math. France 131 (3), 2003, p. 359–372

EQUIDISTRIBUTION TOWARDS THE GREEN CURRENT

BY VINCENT GUEDJ

ABSTRACT. — Let $f: \mathbb{P}^k \to \mathbb{P}^k$ be a dominating rational mapping of first algebraic degree $\lambda \geq 2$. If S is a positive closed current of bidegree (1, 1) on \mathbb{P}^k with zero Lelong numbers, we show – under a natural dynamical assumption – that the pullbacks $\lambda^{-n}(f^n)^*S$ converge to the Green current T_f . For some families of mappings, we get finer convergence results which allow us to characterize all f^* -invariant currents.

RÉSUMÉ (Équidistribution vers le courant de Green). — Soit $f : \mathbb{P}^k \to \mathbb{P}^k$ une application rationnelle dominante de premier degré algébrique $\lambda \geq 2$. Lorsque S est un courant positif fermé de bidegré (1,1) sur \mathbb{P}^k dont les nombres de Lelong sont tous nuls, nous montrons, sous une hypothèse dynamique naturelle, que les pull-backs $\lambda^{-n}(f^n)^*S$ convergent vers le courant de Green T_f . Pour certaines familles d'applications, des résultats de convergence raffinés nous permettent de caractériser tous les courants f^* -invariants.

Introduction

Let $f : \mathbb{P}^1 \to \mathbb{P}^1$ be a rational map of degree $\lambda \geq 2$. A celebrated result of Brolin, Lyubich, Freire-Lopez-Mañe asserts that the preimages $\lambda^{-n}(f^n)^* \sigma$ of any probability measure σ on \mathbb{P}^1 converge to an invariant measure μ_f as soon as $\sigma(\mathcal{E}_f) = 0$, where \mathcal{E}_f is a (possibly empty) finite exceptional set. The purpose of this note is to prove similar results in higher dimension.

Texte reçu le 17 janvier 2002, révisé le 1^{er} juillet 2002, accepté le 9 septembre 2002 VINCENT GUEDJ, Laboratoire É. Picard, UMR 5580 Université Paul Sabatier, 118 route de Narbonne, 31400 Toulouse (France) • *E-mail* : guedj@picard.ups-tlse.fr 2000 Mathematics Subject Classification. — 32H50, 58F23, 58F15.

Key words and phrases. — Green current, holomorphic dynamics, volume estimates.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE
 0037-9484/2003/359/\$ 5.00

 © Société Mathématique de France
 0037-9484/2003/359/\$ 5.00

GUEDJ (V.)

Let $f: \mathbb{P}^k \to \mathbb{P}^k$ be a rational mapping. It can be written $f = [P_0: \dots: P_k]$ in homogeneous coordinates, where the P_j 's are homogeneous polynomials of the same degree λ (the first algebraic degree of f) with no common factor $P_0 \land \dots \land P_k = 1$. Note that when $k \ge 2$, f is not necessarily holomorphic: it is not well defined on the indeterminacy set $I_f = \bigcap_j P_j^{-1}(0)$ which is an algebraic subset of \mathbb{P}^k of codimension ≥ 2 . There are several ways one can try to generalize the one-dimensional result. Given Z an algebraic subset of \mathbb{P}^k of pure codimension p, one can ask whether $f^{-n}(Z)$ (properly normalized) converges to an invariant current of bidegree (p, p). In this note we focus on the case p = 1.

Given S a positive closed current of bidegree (1, 1) on \mathbb{P}^k , we consider

$$S_n := \lambda^{-n} (f^n)^* S.$$

This is a bounded sequence of positive closed currents of bidegree (1, 1) on \mathbb{P}^k . When $S = \omega$ is the Fubini-Study Kähler form, it was proved by Sibony [19] that (ω_n) converges to an invariant Green current T_f . On the other hand Russakovskii and Shiffman have shown [18] that $[H]_n - \omega_n \to 0$ for almost every hyperplane H of \mathbb{P}^k . Our main result interpolates between these two extreme cases.

THEOREM 0.1. — Let $f : \mathbb{P}^k \to \mathbb{P}^k$ be a dominating rational mapping with $\lambda \geq 2$. Assume there exists an invariant probability measure μ such that $\log |J_{FS}(f)| \in L^1(\mu)$. Let S be a positive closed current of bidegree (1,1) and unit mass on \mathbb{P}^k . If $\nu(S, p) = 0$ for all $p \in \mathbb{P}^k$, then

$$\frac{1}{\lambda^n} (f^n)^* S \longrightarrow T_f \quad in \ the \ weak \ sense \ of \ currents.$$

Here $\nu(S, p)$ denotes the Lelong number of S at point p and $J_{FS}(f)$ denotes the jacobian of f with respect to the Fubini-Study volume form ω^k . Similar (weaker) results were previously obtained for Hénon mappings [1], [8], birational mappings [6], and holomorphic endomorphisms of \mathbb{P}^k [9], [19], [7].

Although Theorem 0.1 does not imply directly Russakovskii-Shiffman's result, the proof shows one essentially has to assume $\sup_{p \in \mathbb{P}^k \setminus E} \nu(S_n, p) \to 0$, where E is some (possibly empty) exceptional set (see Theorem 1.4). The key ingredients of the proof are: a pluripotential estimate of the volume of sublevel sets of a quasiplurisubharmonic function [16] and a dynamical estimate on the decreasing of volumes under iteration (Theorem 1.2). Note that all the volumes are computed with respect to the Fubini-Study volume form ω^k .

We prove the volume estimates and our main result in Section 1. We give refinements of the latter in Section 2 in case f is an holomorphic endomorphism of \mathbb{P}^k (Section 2.1) or a special type of polynomial endomorphism of \mathbb{C}^k (Section 2.2). This allows us to characterize every f^* -invariant current. Such equidistribution results should be understood as strong ergodic properties of

360

tome $131 - 2003 - n^{o} 3$

the Green current T_f . In dimension 1 indeed this implies that T_f is strongly mixing (see Theorem VIII.22 in [2]). For the reader's convenience we recall in an Appendix compactness criteria for families of qpsh functions. They are the higher dimensional counterparts of Montel's Theorem.

Acknowledgement. — We thank Ahmed Zeriahi for several useful conversations concerning this article. We also thank the referee for reading the paper carefully and making helpful comments.

1. Equidistribution of pullbacks of currents

Let $f : \mathbb{P}^k \to \mathbb{P}^k$ be a rational mapping with first algebraic degree $\lambda \geq 2$. We always assume f is dominating, *i.e.* its jacobian does not vanish identically in any coordinate chart. It follows that a generic point has $d_t(f)$ well defined preimages by f. Note that $d_t(f) = \lambda$ when k = 1 but these two degrees differ in general when $k \geq 2$.

Let ω denote the Fubini-Study Kähler form on \mathbb{P}^k . The smooth form $f^*\omega$ is well defined in $\mathbb{P}^k \setminus I_f$ and extends trivially through I_f as a positive closed current of bidegree (1, 1) and mass $||f^*\omega|| = \int_{\mathbb{P}^k} f^*\omega \wedge \omega^{k-1} = \lambda$. So $\lambda^{-1}f^*\omega$ is cohomologous to ω . Since \mathbb{P}^k is Kähler, this can be written

$$\lambda^{-1} f^* \omega = \omega + \mathrm{dd}^c G,$$

where $G \in L^1(\mathbb{P}^k)$ (see [11, p. 149]). The function G is "quasiplurisubharmonic" (qpsh): it is locally given as the sum of a psh function (a local potential of $\lambda^{-1}f^*\omega \geq 0$) and a smooth function (a local potential of $-\omega$). In particular it is bounded from above on \mathbb{P}^k : replacing G by $G - C_0$, we can therefore assume $G \leq 0$. Sibony [19] has shown that the decreasing sequence of qpsh functions

(*)
$$G_n := \sum_{j=0}^{n-1} \frac{1}{\lambda^j} G \circ f^j$$

converges in $L^1(\mathbb{P}^k)$ to a qpsh function $G_{\infty} \in L^1(\mathbb{P}^k)$. This shows that $\lambda^{-n}(f^n)^*\omega$ converges in the weak sense of (positive) currents to the so called Green current $T_f \geq 0$ which satisfies $f^*T_f = \lambda T_f$.

A natural question is then to look at the convergence of $S_n := \lambda^{-n}(f^n)^* S$, where S is now any positive closed current of bidegree (1,1) and unit mass on \mathbb{P}^k . When S = [H] is the current of integration along an hyperplane of \mathbb{P}^k , it was shown by Russakovskii and Shiffman [18] that $[H]_n \to T_f$ for every Houtside some pluripolar set $\mathcal{E} \subset (\mathbb{P}^k)^*$. In order to prove convergence of S_n for more general currents S, we first need to get control on the decreasing of volumes under iteration.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE

GUEDJ (V.)

1.1. Volume estimates. — Let $f : \mathbb{P}^k \to \mathbb{P}^k$ be a dominating rational mapping with $\lambda \geq 2$. Let $J_{FS}(f)$ denote its jacobian with respect to the Fubini-Study Kähler volume form. It is defined by

$$f^*\omega^k = \left|J_{FS}(f)\right|^2 \omega^k.$$

PROPOSITION 1.1. — Fix B an open subset of \mathbb{P}^k and $\delta_0 > 0$. There exists $C_0 > 0$ such that for every open subset Ω of \mathbb{P}^k with $\operatorname{vol}(\Omega) \geq \delta_0$,

$$\operatorname{vol}(f^{n}(\Omega)) \geq (C_{0})^{\lambda^{n}} \exp\left(\frac{1}{\operatorname{vol}(B)\operatorname{vol}(\Omega)}\int_{B} \log|J_{FS}(f^{n})|^{2}\omega^{k}\right)$$

for all $n \in \mathbb{N}$.

Proof. — Fix \mathbb{C}^k an affine chart of \mathbb{P}^k . We have

$$f = (P_1/P_0, \dots, P_k/P_0)$$

in \mathbb{C}^k where the P_j 's are polynomials of degree $\leq \lambda = \delta_1(f)$. Since $\omega = \mathrm{dd}^c \frac{1}{2} \log[1 + ||z||^2]$ in \mathbb{C}^k , we get

$$\omega^{k}(z) = \left(1 + \|z\|^{2}\right)^{-(k+1)} \mathrm{d}V,$$

where dV denotes the euclidean volume form in \mathbb{C}^k . Therefore

$$|J_{FS}(f)|^2 = |J_{\text{eucl}}(f)|^2 \Big(\frac{1+||z||^2}{1+||f(z)||^2}\Big)^{k+1}$$

We infer

$$\log|J_{FS}(f)| = u - v,$$

where u, v are qpsh functions such that $dd^c u, dd^c v \ge -2\lambda k\omega$. Let Ω be an open subset of \mathbb{P}^k . We have

$$\operatorname{vol}(f^{n}(\Omega)) = \int_{f^{n}(\Omega)} \omega^{k} \geq \frac{1}{d_{t}(f)^{n}} \int_{\Omega} \left| J_{FS}(f^{n}) \right|^{2} \omega^{k},$$

where the inequality follows from the change of variable formula. The concavity of the logarithm yields

$$\operatorname{vol}(f^n(\Omega)) \ge \frac{\operatorname{vol}(\Omega)}{d_t(f)^n} \exp\left[\frac{2D_n}{\operatorname{vol}(\Omega)} \int_{\Omega} \frac{1}{D_n} (u_n - v_n) \omega^k\right],$$

where

$$\log|J_{FS}(f^n)| = u_n - v_n$$

with $\mathrm{dd}^c u_n, \mathrm{dd}^c v_n \geq -D_n \omega, D_n \leq 2\lambda^n k$. Observe that we can decompose

$$\frac{1}{D_n}\log\left|J_{FS}(f^n)\right| = \varphi_n - \psi_n + \frac{1}{\operatorname{vol}(B)}\int_B \frac{1}{D_n}\log\left|J_{FS}(f^n)\right|\omega^k,$$

томе 131 – 2003 – N^o 3

362

where

$$\varphi_n = D_n^{-1} u_n - \log \|z\| - \frac{1}{\operatorname{vol}(B)} \int_B (D_n^{-1} u_n - \log \|z\|) \omega^k$$
$$\psi_n = D_n^{-1} v_n - \log \|z\| - \frac{1}{\operatorname{vol}(B)} \int_B (D_n^{-1} v_n - \log \|z\|) \omega^k.$$

The functions φ_n, ψ_n are quasiplurisubharmonic on \mathbb{P}^k ($\mathrm{dd}^c \varphi_n, \mathrm{dd}^c \psi_n \geq -\omega$) with $\int_B \varphi_n = \int_B \psi_n = 0$. It follows therefore from Proposition 3.2 (Appendix) that they belong to a compact family of qpsh functions, so there exists $C_\Omega \in \mathbb{R}$ such that $\int_{\Omega} (\varphi_n - \psi_n) \omega^k \geq C_\Omega$, for all $n \in \mathbb{N}$. Since $D_n \leq 2k\lambda^n$, this yields the desired inequality.

It remains to get a lower bound on $\int_B \log |J_{FS}(f^n)| \omega^k$, where B is an open subset which we may fix as we like.

THEOREM 1.2. — Let $f : \mathbb{P}^k \to \mathbb{P}^k$ be a dominating rational mapping with $\lambda \geq 2$. Assume there exists an invariant probability measure μ such that $\log |J_{FS}(f)| \in L^1(\mu)$. Fix $\delta_0 > 0$. Then there exists $C_0 > 0$ such that for every open subset Ω of \mathbb{P}^k with $\operatorname{vol}(\Omega) \geq \delta_0$,

$$\operatorname{vol}(f^n(\Omega)) \ge C_0^{\lambda^n}, \quad \forall n \in \mathbb{N}.$$

Proof. — Using Proposition 1.1, it is sufficient to find M > 0 such that for all n, $\int_B \log |J_{FS}(f^n)| \omega^k \ge -M\lambda^n$. We take here $B = \mathbb{P}^k$ (but other normalisations could be useful, see Remark 1.3 below).

We decompose $\lambda^{-1} \log |J_{FS}(f)| = u - v + C$, where u, v are qpsh functions $(\mathrm{dd}^c u, \mathrm{dd}^c v \ge -\omega)$ such that $\sup_{\mathbb{P}^k} u = \sup_{\mathbb{P}^k} v = 0$ and $C \in \mathbb{R}$. Thus we get

$$\frac{1}{\lambda^n} \log \left| J_{FS}(f^n) \right| = \frac{1}{\lambda^n} \sum_{j=0}^{n-1} \log \left| J_{FS}(f) \circ f^j \right| \ge \sum_{j=0}^{n-1} \frac{1}{\lambda^{n-j}} u_j + \frac{n}{\lambda^n} C,$$

where $u_j := \lambda^{-j} u \circ f^j$. It is therefore sufficient to get a uniform lower bound on $\int_{\mathbb{P}^k} u_j \omega^k$. This is a consequence of the fact that (u_j) is relatively compact in $L^1(\mathbb{P}^k)$. Indeed $\mathrm{dd}^c u_j \geq -\lambda^{-j} (f^j)^* \omega$, so $u_j + G_j$ is qpsh. By Lemma 3.1 (Appendix), the sequence $(u_j + G_j)$ is either relatively compact or uniformly converges to $-\infty$. Since $G_j \to G_\infty \in L^1(\mathbb{P}^k)$, the sequence (u_j) is either relatively compact or converges to $-\infty$. But the latter can not happen since $u \in L^1(\mu)$ and $\int u_j d\mu = \lambda^{-j} \int u d\mu \to 0$. The desired control on $\int_{\mathbb{P}^k} \log |J_{FS}(f^n)| \omega^k$ follows.

REMARK 1.3. — The assumption on the existence of μ is natural in our dynamical context. Observe that it is satisfied if *e.g.* there exists a non critical periodic point.

Other assumptions could be made to obtain the final lower bound on $\int_B \log |J_{FS}(f^n)| \omega^k$. If $f_{|\mathbb{C}^k}$ is polynomial, it is enough to assume that

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE