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INNER AND OUTER HAMILTONIAN CAPACITIES

by David Hermann

Abstract. — The aim of this paper is to compare two symplectic capacities in Cn

related with periodic orbits of Hamiltonian systems: the Floer-Hofer capacity arising
from symplectic homology, and the Viterbo capacity based on generating functions.
It is shown here that the inner Floer-Hofer capacity is not larger than the Viterbo
capacity and that they are equal for open sets with restricted contact type boundary.
As an application, we prove that the Viterbo capacity of any compact Lagrangian
submanifold is nonzero.

Résumé (Capacités hamiltoniennes intérieure et extérieure). — Nous nous propo-
sons de comparer deux capacités dans Cn définies par les orbites périodiques de sys-
tèmes hamiltoniens. La première est la capacité de Floer-Hofer, issue de l’homologie
symplectique ; la seconde est la capacité de Viterbo basée sur des fonctions généra-
trices. Nous montrons que la capacité intérieure de Floer-Hofer n’est pas plus grande
que celle de Viterbo et qu’elles cöıncident sur les ouverts dont le bord est une variété de
contact restreinte. Nous montrons enfin que la capacité de Viterbo d’une sous-variété
lagrangienne compacte n’est jamais nulle.
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c© Société Mathématique de France



510 HERMANN (D.)

4. Generating functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525
5. Proofs of the main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
6. Some open questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540

1. Introduction and main results

Throughout this paper, we consider the symplectic space (Cn, ω = dλ0),
where n ! 2 and λ0 = 1

2 Im(z · dz). To each (time-dependent) Hamiltonian
function H ∈ Ht = C∞(S1 × Cn) we associate a Hamiltonian vector field XH

given by ω(XH , .) = −dH(t, .). We shall always assume that XH is complete:
its flow φH

t is called the Hamiltonian flow of H . We denote the group of
compactly supported Hamiltonian diffeomorphisms by D:

D =
{
φH

1 /H ∈ C∞
0 (S1 × Cn)

}
.

The symplectic size of subsets of Cn is measured by symplectic capacities in-
troduced by Gromov in [6] and developed by Ekeland and Hofer in [3].

Definition 1.1. — A (relative) symplectic capacity on (Cn, ω) is a map which
associates a number c(U) ∈ [0, +∞] to each subset U of Cn and which satisfies:

1) U ⊂ V ⇒ c(U) " c(V ) (monotonicity);
2) c(φ(U)) = c(U) for any φ ∈ D (symplectic invariance);
3) c(αU) = α2c(U) for any real number α > 0 (homogeneity);
4) c(B2n(1)) = c(B2(1) × Cn−1) = π, where B2n(1) is the unit open ball

(normalization).

Given any capacity c, define the associated inner capacity c∨ and outer ca-
pacity c∧ by

(1.1)
{ c∨(U) = sup

{
c(K) /K is compact and K ⊂ U

}
,

c∧(U) = inf
{
c(V ) /V is open and U ⊂ V

}
.

The capacity c is said to be inner regular if c∨ = c and outer regular if c∧ = c
(see [8]).

We will consider Hamiltonian capacities in Cn, as introduced in [3]. Given
any bounded connected open set U ⊂ Cn, let Had(U) ⊂ Ht be some class of
“admissible” Hamiltonian functions. Consider the action functional

AH(γ) =
∫

S1
γ∗λ0 −

∫ 1

0
H

(
t, γ(t)

)
dt for γ ∈ Λ = C∞(S1, Cn)
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whose critical points are the 1-periodic orbits of XH . By a universal variational
process, select a positive critical value c(H) of AH for each H ∈ Had(U). De-
pending on the functorial properties of Had (see Section 2), define the capacity
of U by one of the following formulae

(1.2)
{

c(U) = sup
{
c(H) / H ∈ Had(U)

}
or

c(U) = inf
{
c(H) / H ∈ Had(U)

}
.

Then extend this capacity to all subsets of Cn by standard processes: the
capacity of any open set U is given by

(1.3) c(U) = sup
{
c(V ) / V open, bounded and connected with V ⊂ U

}

and the capacity of any subset E in Cn is given by

(1.4) c(E) = inf
{
c(U) / U is open and E ⊂ U

}
.

These capacities have a geometric representation in the following situation.

Definition 1.2. — A hypersurface Σ has restricted contact type (or RCT) if
there exists a vector field η satisfying η # Σ and Lηω = ω on Cn, where L
denotes the Lie derivative. A bounded connected open set with RCT boundary
will be called a RCT open set.

The vector field η is called a Liouville vector field. Each Hamiltonian capacity
satisfies the Representation Theorem: the capacity of any RCT open set U is
the area of some closed characteristic of ∂U .

We will focus here on two of these Hamiltonian capacities. The first one
was first defined in [5] using symplectic homology (see [4]). This capacity can
be viewed as a variant of the Ekeland-Hofer capacity in [3]. The admissible
class HFH(U) is the set of those Hamiltonian functions which are negative
near S1 × U and quadratic at infinity, and the critical value cFH(H) is ob-
tained by considering the Floer homology groups associated to H . We will also
consider the generating function capacity defined by Viterbo in [14]. The ad-
missible class HV(U) is the set of compactly supported Hamiltonian functions
with support in S1 × U , and the critical value cV(H) is defined as a minmax
critical value for a generating function of the graph of φH

1 . It should be noticed
that the capacity c in [14] is defined a priori for disconnected open sets. Thus
the capacity cV defined by (1.3) could be smaller than c: if U1 and U2 are dis-
joint open sets, (1.3) shows that cV(U1 ∪ U2) = max(cV(U1), cV(U2)), whereas
this property is known for the capacity c only if U1 and U2 can be separated
by an hyperplane (see [12]). However, this does not affect the results in this
paper. A simple observation proves the following regularity result.

Proposition 1.3. — For any subset U in Cn, we have

cV(U) = c∨V(U) and cFH(U) = c∧FH(U).
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512 HERMANN (D.)

Several properties of cFH and cV make the interest of comparing them. Be-
cause of Proposition 1.3, it is easy to find open sets U with cFH(U) = 1
and cV(U) arbitrarily small. But this occurs only because the periodic orbits
defining cFH(U) stay away from U , whereas those defining cV(U) lie in U . This
phenomenon is somehow artificial and it disappears if we compare capacities
with the same regularity: our main result is the following inequality.

Theorem 1.4. — For any subset U in Cn, we have c∨FH(U) " cV(U).

The main feature in Theorem 1.4 is that c∨FH measures a set from inside,
whereas cV measures it from outside, which heuristically explains the inequality.
Moreover, by the homogeneity property, any symplectic capacity c satisfies

(1.5) c∨(U) = c∧(U) = c(U) for any RCT open set U

(see Section 2). This leads to cFH(U) " cV(U), and we will also prove the
opposite inequality.

Theorem 1.5. — For any RCT open set U in Cn, we have cFH(U) = cV(U).

Our main application of Theorem 1.4 deals with the so-called Lagrangian
camel problem. Set

E− =
{
z ∈ Cn / Re (z1) < 0

}
, E+ =

{
z ∈ Cn /Re (z1) > 0

}
,

E(ε) = E− ∪E+ ∪B2n(ε)
and consider some compact set L ⊂ E−. The camel problem is formulated as
follows:

Does there exist H ∈ Ht with support in S1×E(ε) satisfying φH
1 (L) ⊂ E+?

By the symplectic reduction properties of the capacity cV , a positive answer
implies cV (L) " πε2 (see [14]). In [10], Théret proved that compact hyperbolic
Lagrangian submanifolds and Lagrangian tori have nonzero Viterbo capacity.
In other terms, such a submanifold cannot pass through an arbitrarily small
hole made in a hyperplane. On the other hand, we can deduce from results
by Viterbo in [16] that the Floer-Hofer capacity of any compact Lagrangian
submanifold L in Cn is nonzero. More precisely, let J be the set of almost
complex structures J on Cn satisfying J = i at infinity and calibrated by ω,
which means that ω(. , J.) is a Riemannian metric. For each J ∈ J , consider the
set CJ of J-holomorphic curves with boundary in L. The Gromov Compactness
Theorem shows that

(1.6) w̃(L) = sup
J∈J

(
inf

C∈CJ

∫

C
ω
)

> 0,

and the following inequality holds (compare [16], Theorem 6.10).

Theorem 1.6. — For any compact Lagrangian submanifold L, we have

cFH(L) ! w̃(L).
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Since we have c∨FH(L) = cFH(L) for any compact set L (see Section 2),
Theorems 1.4 and 1.6 imply the following generalization of [10].

Corollary 1.7. — If L is a compact Lagrangian submanifold, we have

cV(L) ! cFH(L) > 0.

Let [λ0] ∈ H1(L) be the Liouville class of L and let P(L) = [λ0] ·π1(L) be its
periods group: by the Gromov Compactness Theorem, we have w̃(L) ∈ P(L).
When L is rational, that is, P(L) = aZ for some real number a > 0, Theo-
rem 1.6 implies that L cannot be moved by a Hamiltonian isotopy into an open
set with capacity smaller than a, and Theorem 1.7 implies that L cannot pass
through a hole of radius less than

√
a/π.

In Section 2 we will recall the common features of Hamiltonian capacities,
and establish some very elementary results about them, in particular Proposi-
tion 1.3 and (1.5). In Section 3 we recall the definitions of symplectic homology
and of the Floer-Hofer capacity in [4], [1], [5], [16], [7]. In Section 4 we recall
the definition of the Viterbo capacity in [14] and the uniqueness of symplectic
homology proved in [15], which is the main tool in the proof of Theorem 1.4.
We also give our strategy, explaining how cV and c∨FH can be viewed as differ-
ences of critical levels of the same Hamiltonian function. In Section 5 we prove
Theorems 1.4, 1.5 and 1.6. The proof of Theorem 1.5 involves the intrinsic
description of the capacity cFH given in [16] and [7], followed by a deformation
argument. In the proof of Theorem 1.6, we adapt the arguments in [16] to
our settings.
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2. Axiomatic properties

Consider some functor Had which associates a class of Hamiltonian functions
Had(U) ⊂ Ht to each bounded connected open set U in Cn. Set

Had =
⋃

U⊂Cn

Had(U),

and consider a positive section c of the action spectrum, that is, a map c :
Had → R such that c(H) = AH(γH) is a positive critical value of AH . Assume
that the selector c is invariant by Hamiltonian isotopies, which means that
H ◦ φ ∈ Had and c(H ◦ φ) = c(H) for each H ∈ Had and each φ ∈ D. Given
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