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RADIATION FIELDS

by Piotr T. Chruściel & Olivier Lengard

Abstract. — We study the “hyperboloidal Cauchy problem” for linear and semi-
linear wave equations on Minkowski space-time, with initial data in weighted Sobolev
spaces allowing singular behavior at the boundary, or with polyhomogeneous initial
data. Specifically, we consider nonlinear symmetric hyperbolic systems of a form which
includes scalar fields with a λφp nonlinearity, as well as wave maps, with initial data
given on a hyperboloid; several of the results proved apply to general space-times ad-
mitting conformal completions at null infinity, as well to a large class of equations
with a similar non-linearity structure. We prove existence of solutions with controlled
asymptotic behavior, and asymptotic expansions for solutions when the initial data
have such expansions. In particular we prove that polyhomogeneous initial data (sat-
isfying compatibility conditions) lead to solutions which are polyhomogeneous at the
conformal boundary I+ of the Minkowski space-time.
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Résumé (Champs rayonnants). — Nous étudions le « problème de Cauchy hyper-
bolöıdal » pour des équations d’ondes linéaires et semi-linéaires sur l’espace-temps de
Minkowski, avec des données initiales, singulières au bord, dans des espaces de So-
bolev à poids, où polyhomogènes. Plus précisement, nous considérons une classe de
systèmes symétriques hyperboliques non-linéaires, compatibles avec l’équation d’onde
scalaire λφp, ainsi qu’avec des applications d’onde, avec données initiales prescrites
sur un hyperboloide. Plusieurs de nos résultats restent valables pour une classe gé-
nérale d’espace-temps avec complétions conformes à l’infini isotrope, ainsi que pour
une large classe d’équations avec une certaine structure des termes non-linéaires. Nous
démontrons l’existence de solutions avec comportement asymptotique contrôlé, ainsi
que des développements asymptotiques si les données initiales en possèdent. En parti-
culier nous démontrons, sous une condition de compatibilité, que les données initiales
polyhomogènes conduisent à des solutions polyhomogènes près du bord conforme I+

de l’espace-temps de Minkowski.
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1. Introduction

Bondi et al. [6] together with Sachs [34] and Penrose [33], building upon
the pioneering work of Trautman [36, 37], have proposed in the sixties a set
of boundary conditions appropriate for the gravitational field in the radiation
regime. A somewhat simplified way of introducing the Bondi-Penrose (BP)
conditions is to assume existence of “asymptotically Minkowskian coordinates”
(xµ) = (t, x, y, z) in which the space-time metric g takes the form

(1.1) gµν − ηµν =

1

hµν (t− r, θ, ϕ)

r
+

2

hµν (t− r, θ, ϕ)

r2
+ · · · ,

where ηµν is the Minkowski metric diag(−1, 1, 1, 1), u stands for t−r, with r, θ, ϕ
being the standard spherical coordinates on R

3. The expansion above has to
hold at, say, fixed u, with r tending to infinity. Existence of classes of solutions
of the vacuum Einstein equations satisfying the asymptotic conditions (1.1)
follows from the work in [20] together with [3,4,18,19]. As of today it remains
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an open problem how general, within the class of radiating solutions of vacuum
Einstein equations, are those solutions which display the behavior (1.1). Indeed,
the results in [1–4, 17], [17] suggest strongly(1) that a more appropriate setup
for such gravitational fields is that of polyhomogeneous asymptotic expansions:

(1.2) gµν − ηµν ∈ Aphg.

In the context of expansions in terms of a radial coordinate r tending to infinity,
the space of polyhomogeneous functions is defined as the set of smooth functions
which have an asymptotic expansion of the form

(1.3) f ∼
∞∑

i=0

Ni∑

j=0

fij(u, θ, ϕ)
lnj r

rni

,

for some sequences ni, Ni, with ni ↗ ∞. Here the symbol ∼ stands for
“being asymptotic to”: if the right-hand-side is truncated at some finite i, the
remainder term falls off appropriately faster. Further, the functions fij are
supposed to be smooth, and the asymptotic expansions should be preserved
under differentiation.(2)

The suggestion, that the expansions (1.2) are better suited for describing the
gravitational field in the radiation regime than (1.1), arises from the fact that
generic – in a well defined sense – initial data constructed in [1–4,17], are poly-
homogeneous. This leads naturally to the question, whether polyhomogeneity
of initial data is preserved under evolution dictated by wave equations.

In this paper we answer in the affirmative this question for semi-linear wave
equations, and for the wave map equation, on Minkowski space-time. We de-
velop a functional framework appropriate for the analysis of such questions.
We prove local in time existence of solutions for classes of equations that in-
clude the semi-linear wave equations and the wave map equation on Minkowski
space-time, with conormal and with polyhomogeneous initial data. We show
that polyhomogeneity is preserved under evolution when appropriate (neces-
sary) corner conditions are satisfied by the initial data. We note that the initial
data considered here are more singular than allowed in the existing related re-
sults [7,28,31]. We are planning to analyse the corresponding problems for the
vacuum Einstein equation in a forthcoming publication, see also [30].

(1) Cf. [29] and references therein for some further related results.
(2) The choice of the sequences ni, Ni is not arbitrary, and is dictated by the equations at
hand. For example, the analysis of 3+1 dimensional Einstein equations in [17] suggests that
consistent expansions can be obtained with ni = i. On the other hand, Theorem 5.7 below
gives actually ni = 1

2
i for wave-maps on 2 + 1 dimensional Minkowski space-time. We note

that the 2 + 1 dimensional wave map equation is related to the vacuum Einstein equations
with cylindrical symmetry (cf., e.g., [5, 14, 15]).
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Our main results are the existence and polyhomogeneity of solutions with
appropriate polyhomogeneous initial data for the nonlinear scalar wave equa-
tion, and for the wave map equation. We achieve this in a few steps. First,
we prove local existence of solutions of these equations in weighted Sobolev
spaces, cf. Theorems 4.1 and 5.1. The next step is to obtain estimates on the
time derivatives, cf. Theorems 4.4, 5.4 and 5.6. Those estimates are uniform
in time in a neighborhood of the initial data surface if the initial data satisfy
compatibility conditions. Somewhat surprisingly, we show that all initial data
in weighted Sobolev spaces, not necessarily satisfying the compatibility con-
ditions, evolve in such a way that the compatibility conditions will hold on
all later time slices; see Corollary 4.5 and Theorems 5.4 and 5.6. Finally, in
Theorems 4.10 and 5.7 we prove polyhomogeneity of the solutions with poly-
homogeneous initial data; this requires a hierarchy of compatibility conditions.
We hope to be able to show in a near future that polyhomogeneity of solutions
can be established, for polyhomogeneous initial data, with a finite number of
compatibility conditions.

The restriction to Minkowski space-time in Theorem 5.7 is not necessary,
and is only made for simplicity of presentation of the results; the same remark
applies to Theorem 4.1. Similarly the choice of the initial data hypersurface as
the standard unit hyperboloid is not necessary.

This work is organised as follows: First, the reader is referred to Appendix A
for definitions, notations, and the functional spaces involved; we also develop
calculus in those spaces there. In Section 2 we briefly recall Penrose’s confor-
mal completions, as they provide the link between the asymptotic behavior of
fields and the local analysis carried on in this work. In Section 3 we consider
linear equations. There the key elements of our analysis are: a) Proposition 3.1
and its variations, which give a priori estimates in weighted Sobolev spaces;
b) the mechanism for proving polyhomogeneity, provided in the proof of The-
orem 3.4. The transition from the linear weighted Sobolev estimates to their
nonlinear counterparts is done in Sections 4 and 5. This has already been out-
lined above, and requires a considerable amount of work. In Appendix B we
prove several auxiliary results on ODE’s, some of which are fairly straightfor-
ward; as those results are used in the body of the paper in various, sometimes
involved, iterative arguments, it seemed convenient to have precise statements
at hand.

Some of the results proved here have been announced in [16].

2. Conformal completions

The aim of this section is to set-up the framework necessary for our consider-
ations; the results here are well known to relativists, but perhaps less so to the
PDE community. In any case they are needed to establish notation. Consider,
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thus, an n+ 1 dimensional space-time (M, g) and let

(2.1) g̃ = Ω2
g.

Let �h denote the wave operator associated with a Lorentzian metric h,

�hf =
1√

| dethρσ|
∂µ

(√
| dethαβ |hµν∂νf

)
.

We recall that the scalar curvatureR = R(g) of g is related to the corresponding

scalar curvature R̃ = R̃(g̃) of g̃ by the formula

(2.2) R̃Ω2 = R− 2n
{ 1

Ω
�gΩ +

n− 3

2

|∇Ω|2
g

Ω2

}
.

It then follows from (2.2) that we have the identity

(2.3) �eg (Ω−(n−1)/2f) = Ω−(n+3)/2
(
�g f +

n− 1

4n
(R̃Ω2 −R)f

)
.

It has been observed by Penrose [33] that the Minkowski space-time (M, η)
can be conformally completed to a space-time with boundary (M̃, η̃), η̃ = Ω2η
on M, by adding to M two null hypersurfaces, usually denoted by I+ and I−,
which can be thought of as end points (I+) and initial points (I−) of inex-
tendible null geodesics [32,33,38]. We will only be interested in “the future null
infinity” I+; an explicit construction (of a subset of I+) which is convenient
for our purposes proceeds as follows: for (x0)2 <

∑
i(x

i)2 we define

(2.4) yµ =
xµ

xαxα
·

In the coordinate system {yµ} the Minkowski metric η ≡ −(dx0)2 + (dx1)2 +
(dx2)2 + (dx3)2 = ηαβ dxαdxβ takes the form

η =
1

Ω2
ηαβ dyαdyβ , Ω = ηαβ y

αyβ .(2.5)

We note that under (2.4) the exterior of the light cone Cx
µ

0 ≡ {ηαβxαxβ = 0}
emanating from the origin of the xµ-coordinates is mapped to the exterior of

the light cone Cy
µ

0 = {ηαβ yαyβ = 0} emanating from the origin of the yµ-

coordinates. The conformal completion is obtained by adding Cy
µ

0 to M,

M̃ = M∪
(
Cy

µ

0 \ {0}
)
,

with the obvious differential structure arising from the coordinate system yµ.
We shall use:

• the symbol I to denote Cy
µ

0 \ {0}, and

• I+ to denote Cy
µ

0 \ {0} ∩ {y0 > 0}.
As already mentioned, I so defined is actually a subset of the usual I, but

this will be irrelevant for our purposes.
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