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ON THE RIGIDITY OF WEBS

by Michel Belliart

Abstract. — Plane d-webs have been studied a lot since their appearance at the
turn of the 20th century. A rather recent and striking result for them is the theorem of
Dufour, stating that the measurable conjugacies between 3-webs have to be analytic.
Here, we show that even the set-theoretic conjugacies between two d-webs, d ≥ 3 are
analytic unless both webs are analytically parallelizable. Between two set-theoretically
conjugate parallelizable d-webs, however, there always exists a nonmeasurable conju-
gacy; still, every pair of set-theoretically conjugate 3-webs (parallelizable or not) also
are analytically conjugate, while if d ≥ 4 there exist pairs of d-webs which are set-
theoretically conjugate but not even measurably so.

Résumé (Sur la rigidité des tissus). — Les d-tissus plans ont été amplement étu-
diés depuis leur apparition au début du xxe siècle. Un résultat relativement récent
et impressionnant est le théorème de Dufour qui stipule que les conjugaisons mesu-
rables entre 3-tissus sont nécessairement analytiques. Dans cet article nous montrons
que les conjugaisons ensemblistes entre d-tissus (avec d ≥ 3) sont analytiques sauf
si les deux tissus sont analytiquement parallélisables. Cependant, entre deux d-tissus
parallélisables conjugués de manière ensembliste il existe toujours une conjugaison non-
mesurable ; de plus, toute paire de 3-tissus conjugués de manière ensembliste (qu’ils
soient parallélisables ou non) sont également conjugués analytiquement, alors que si
d ≥ 4, il existe des paires de d-tissus qui sont conjugués de manière ensembliste mais
non pas de manière mesurable.
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1. Introduction

1.1. Foliations. — Throughout this note we consider the word “foliation” as
meaning “analytic foliation of the plane R2 by curves”. The classification of
foliations (in this very restricted sense of the word) has been known for years;
first of all, we can describe foliations in two dual ways:

– Given any foliation F , there exists an analytic action of R on R2 whose
orbits are the leaves of F (this is not difficult at all to show).

– Given any foliation F , there exists a continuous submersion φ from R2

to R which is constant along the leaves of F : therefore these leaves are the
connected components of the fibers of φ (this is Kaplan’s Theorem [9]).

Starting from there, it is not too difficult to describe the topological conjugacy
classes of foliations; see [7] for a nice description of the classification (due to
Kaplan [10]).

We simply define the set-theoretic conjugacies between two foliations F
and F ′ as being bijective maps from R2 to R2 which send every leaf of F bijec-
tively onto some leaf of F ′. This is a straightforward but completely formal
definition; observe that any two foliations are set-theoretically conjugate! But
the following very simple example shows us that the notion of a set-theoretic
conjugacy already stops being trivial if we consider more than just one foliation
at a time.

Example 1.1.1. — Let F1 be the foliation of R2 by horizontal lines; let F2 be
that by vertical lines, and let F3 be that by curves having the form y = ex+C

where (x, y) are the natural coordinates and C is a parameter. Then, there
is no bijection of R2 onto R2 inducing a conjugacy of F1 onto itself and a
conjugacy of F2 onto F3 at the same time: indeed any leaf of F1 and any leaf
of F2 meet at exactly one point, while for every leaf L of F3 there is on the
contrary a leaf of F1 not meeting L.

1.2. Webs. — Funnily enough, webs have appeared in mathematics way before
foliations, perhaps because their local geometry is so visibly richer. We call d-
web the datum W = (F1, . . . ,Fd) of d ≥ 3 foliations which we require to be
pairwise transverse at each point: this means e.g., that any leaf L1 of F1 and
any leaf L2 of F2, if not disjoint, intersect at exactly one point with distinct
tangents.

We should mention that usually, a web is locally defined as an unordered col-
lection of d foliations (possibly singular) which are in general position. There
are then obstructions to the possibility of “separating” this data in d distinct
foliations; but these obstructions read either on the singular locus of the con-
figuration, or on the topology of the ambient manifold. Here, we chose to
work with everywhere transverse nonsingular (local) foliations of a contractible
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space; for this reason, our d local foliations glue into global ones and we can
order the collection of them.

In 1908 already, Cartan [3] asks to study the topology of the figure formed
by three families of curves, a problem which he calls the first problem of textile
geometry. From the 1930ies on, the school of Blashke and Bol will give this
problem due consideration, as well as generalize it a lot; the works of that school
are collected in the books [2] and [1]. For a more modern point of view on web
theory, we should mention the surveys [4] and [13] written by two experts in
the field.

We say, of course, that the bijection f of R2 conjugates the d-web W to
the d-web W ′ if it conjugates each of the foliations forming W to the foliation
of W ′ which has the same index. Example 1.1.1 implies that not every couple
of d-webs are conjugate in this way. Finally, we call a web parallelizable if
it is conjugate to some web whose foliations are by parallel affine lines.

1.3. Rigidity. — We have grown used to the fact that a typical map from R
to R is not measurable, that a typical measurable such map is not continuous,
and so forth. . . But the first historical examples of such uncanny behaviour
had been built as counterexamples and did not answer any “real” problems: for
this reason, even after these first examples appeared in the works of Peano,
Riemann, Weierstraß et al., one could still place some faith in the following
informal, sadly erroneous belief,

Credo 1.3.1. — If a problem whose datum is purely analytic has a unique
solution, then that solution must be analytic.

As we hinted to, the above credo was baffled by many counterexamples
which, as a rule, came from dynamical systems theory: for instance, to certain
dynamical systems – the so-called Anosov diffeomorphi sms – one can asso-
ciate invariant foliations which will not necessarily be differentiable even if the
diffeomorphism we started with is analytic (see [11, III.3]; we quote from the
same source: “in general, even if f is C∞, Poincaré transformations are not
even Lipschitz”). Another famous example is that of the “cohomological equa-
tion” f(x+ k)− f(x) = g(x), where the datum g and the unknown f both are
smooth functions from R to itself with period one and k is a given real number:
as soon as k is irrational and

∫ 1

0
g(x)dx = 0, there exists a formal solution for

that equation in the shape of a Fourier series f̂ which, in general, does not
converge at all; for f̂ to converge to a smooth function whatever our choice of
g, the real number k must be diophantine (see [8]). In conclusion, examples
of analytic problems whose solutions only possess a low regularity abound in
modern practice, and this is what makes the following result so very interesting
to us:

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



4 BELLIART (M.)

Theorem (Dufour, [6]). — Any measurable bijection of R2 onto itself which
exchanges two 3-webs must be analytic.

This is the first version of Dufour’s Theorem; we should perhaps mention
the existence of a recent generalization of it to arbitrary dimensions and codi-
mensions by the same author, and the existence of a complex version by Nakai
in codimension one (see [5] and [12], respectively).

1.4. Statement of the theorems. — The purpose of this note is mostly to show:

Theorem 1.4.1. — Let W and W ′ be two d-webs one of which at least is not
analytically parallelizable. Then every set-theoretic conjugacy from W to W ′
is analytic.

If W is a parallelizable web, one can easily show that W possesses non-
measurable self-automorphisms; so, Theorem 1.4.1 is sharp. We should next
wonder if the existence of a set-theoretic conjugacy f between two d-webs al-
ways implies the existence of an analytic one f ′ not necessarily equal to f : this
is a weaker sort of rigidity. Theorem 1.4.1 already solved that problem except
for parallelizable webs, for which we have

Theorem 1.4.2. — The two notions of analytic conjugacy and of set-theoretic
conjugacy for parallelizable d-webs are equivalent precisely if d = 3.

For d ≥ 4 we will exhibit interesting counterexamples.
We would like to underline the similarity of ideas between our proof of

Theorem 1.4.1 and the so-called fundamental theorem of affine geometry. This
famous result states that a bijection of R2 preserving the family of lines has to
be affine; recall how the proof works: first, by using elementary constructions
which are in fact valid over any field K but the field {0, 1}, one associates to
any line-preserving bijection f of K2 a field automorphism τf of K such that
the equality f(

∑
mıMı) =

∑
τf (mı)Mı holds for any barycenter

∑
mıMı

in K2. Thus, the map f will be affine precisely if the field automorphism τf is
trivial. . . which, as one knows, must happen if K = R. Now, the construction
of τf uses the whole set of lines in K2; but if we restrict our attention to
three particular families of parallel lines, we can still build an automorphism of
abelian group τf of K2 and show that the equality f(M + ~v) = f(M) + τf (~v)

holds for every point M and vector ~v. This equality is a weakening of the
former one obtained thanks to the whole set of lines, if we remember that
formally, a vector is simply a barycenter with total mass zero. Instead of the
fact that every field automorphism of R is trivial, we may now invoke the
other fact that every measurable group automorphism of R2 is linear to obtain
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