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(WITH AN APPENDIX BY F. SATO)

by Raf Cluckers & Adriaan Herremans

Abstract. — For a number field K with ring of integers OK , we prove an ana-
logue over finite rings of the form OK/Pm of the fundamental theorem on the Fourier
transform of a relative invariant of prehomogeneous vector spaces, where P is a big
enough prime ideal of OK and m > 1. In the appendix, F. Sato gives an application
of the Theorems 1.1, 1.3 and the Theorems A, B, C in J. Denef and A. Gyoja [Char-
acter sums associated to prehomogeneous vector spaces, Compos. Math., 113 (1998),
237–346] to the functional equation of L-functions of Dirichlet type associated with
prehomogeneous vector spaces.
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Résumé (Théorème fondamental des espaces vectoriels préhomogènes modulo pm.
Avec un appendice par F. Sato)

Soit K un corps de nombres avec anneaux d’entiers OK ; nous prouvons un ana-
logue, sur des anneaux finis de la forme OK/Pm, du théorème fondamental sur la
transformation de Fourier de l’invariante relative d’un espace vectoriel préhomogène.
Ici, P est un idéal premier assez grand de OK et m > 1. Dans l’appendice, F. Sato
donne une application des théorèmes 1.1, 1.3 et des théorèmes A, B, C de J. Denef
et A. Gyoja [Character sums associated to prehomogeneous vector spaces, Compos.
Math., 113 (1998), 237–346] à l’équation fonctionelle de L-fonctions de type Dirichlet
associées aux espaces vectorielles préhomogènes.

1. Introduction

We prove an analogue over finite rings of the fundamental theorem on the
Fourier transform of a relative invariant of prehomogeneous vector spaces. In
general, this fundamental theorem expresses the Fourier transform of χ(f),
with χ a multiplicative (quasi-)character and f a relative invariant, in terms
of χ(f∨)−1, with f∨ the dual relative invariant. Roughly speaking, M. Sato [18]
proved the fundamental theorem over archimedian local fields, J. Igusa [7] over
p-adic number fields, and J. Denef and A. Gyoja [5] over finite fields of big
enough characteristic. In [9], the regular finite field case is reproved. When the
prehomogeneous vector space is regular and defined over a number field K we
prove an analogue of the fundamental theorem over rings of the form OK/Pm,
where P is a big enough prime ideal of the ring of integers OK of K and m > 1,
see Theorem 1.1. This result is derived from the results of [5] by using explicit
calculations of exponential sums over the rings OK/Pm.

In [16], F. Sato introduces L-functions of Dirichlet type associated to regular
prehomogeneous vector spaces. In the appendix by F. Sato to this paper, our
results are used to obtain functional equations for these L-functions and, under
extra conditions, their entireness.

To state the main results, we fix our notation on prehomogeneous vector
spaces. Let (G, ρ, V ) be a reductive prehomogeneous vector space, meaning
that G is a connected complex linear reductive algebraic group, ρ : G→ GL(V )

is a finite dimensional rational representation, and V has an open G-orbit
which is denoted by Ω. Assume that (G, ρ, V ) has a relative invariant
0 6= f ∈ C[V ] with character φ ∈ Hom(G,C×), that is, f(gv) = φ(g)f(v) for
all g ∈ G and v ∈ V . We assume that f is a regular relative invariant, namely,
Ω = V \ f−1(0) is a single G-orbit. Writing ρ∨ : G → GL(V ∨) for the dual
of ρ, (G, ρ∨, V ∨) is also a prehomogeneous vector space, with an open G-orbit
which is denoted by Ω∨, and there exists a relative invariant 0 6= f∨ ∈ C[V ∨]

whose character is φ−1. Then Ω∨ = V ∨ \ f∨−1(0). The map F := grad log f is
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an isomorphism between Ω and Ω∨ with inverse F∨ := grad log f∨. One has
dimV = dimV ∨ =: n and deg f = deg f∨ =: d.

Let K be a number field with ring of integers OK . Suppose that (G, ρ, V )

is defined over K. We fix a basis of the K-vector space V (K) and we suppose
that f is in K[V ] and has coefficients in OK (with respect to the fixed K-basis
of V (K)). Similarly we suppose that f∨ is in K[V ∨] and has coefficients in OK
(with respect to the basis of V ∨ dual to the fixed basis of V ). Write V (OK) for
the points of V (K) with coefficients in OK (with respect to the fixed K-basis
of V (K)), and similarly for V ∨(OK). For I an ideal of O, write V (OK/I) for
the reduction modulo I of the lattice V (OK).

The Bernstein-Sato polynomial b(s) of f is defined by

f∨(gradx)f(x)s+1 = b(s)f(x)s.

Write b0 for the coefficient of the term of highest degree of b(s); one has b0 ∈ K.

The following theorem is an analogue of the fundamental theorem for pre-
homogeneous vector spaces.

Theorem 1.1. — Let m ≥ 2 be an integer, P be a prime ideal of OK above a
big enough prime p ∈ Z, χ be a primitive multiplicative character modulo Pm
(extended by zero outside the multiplicative units), and let ψ be a primitive
additive character modulo Pm. Write q := #(OK/P). For L ∈ V ∨(OK/Pm)

write
S(L) :=

∑
x∈V (OK/Pm)

χ
(
f(x)

)
ψ
(
L(x)

)
.

Then the following hold:

1) if f∨(L) 6≡ 0 mod P, then

S(L) = q
1
2mn

(∑
y∈OK/Pm χd(y)ψ(y)

q
1
2m

)
χ
(b0f∨(L)−1

dd

)
α(χ,m)n−1κ∨(L),

where κ∨(L) and α(χ,m) are 1 or −1;

2) if f∨(L) ≡ 0 mod P, then S(L) = 0.

The essential (and typical) content of this fundamental theorem is that the
discrete Fourier transform of the function χ(f) on V (OK/Pm) is equal to the
function χ(f∨)−1 on V ∨(OK/Pm) times some factors, and vice versa.

The first part of Theorem 1.1 is obtained by combining explicit calculations
of character sums of quadratic functions (§2) and of discrete Fourier trans-
forms (§4), a p-adic version of Morse’s lemma (§3), and results of [5]. The
second part of Theorem 1.1 is established by comparing the L2-norms of χ(f)

and of its discrete Fourier transform.
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We also obtain explicit formulas for the constants κ∨(L) and α(χ,m) of
Theorem 1.1, by using work in [5] and elementary calculations. To state these
formulas we use the notion of the discriminant of a matrix, as in [5, 9.1.0].

Definition 1.2. — For a symmetric (n, n)-matrix A with entries in a field k,
if tXAX = diag (a1, . . . , am, 0, . . . , 0) with X ∈GLn(k), tX its transposed,
and ai ∈ k×, put

∆(A) :=
m∏
i=1

ai ∈ k×/k×2,

with k×2 the squares in k×, and call it the discriminant of A.

Write kP for the finite field OK/P and k×P
2 for the squares in k×P . For

m > 1 and L in V ∨(OK/Pm) with f∨(L) 6≡ 0 mod P, denote by h∨(L) the
image in k×P/k

×
P

2 of the discriminant of the matrix (∂2 log f∨(L)/∂yi∂yj)ij ,
where {y1, . . . , yn} is the previously fixed K-basis of V ∨(K). Write χ 1

2
for the

Legendre symbol mod P. We then obtain

Theorem 1.3. — The following hold in case 1) of Theorem 1.1:

1) κ∨(L) = χ 1
2
(−d 2n−1 h∨(L))m;

2) α(χ,m) = 1 for m even;

3) α(χ,m) = G(χ 1
2
, ψ′)/

√
q for m odd, with ψ′ any additive character de-

fined by y 7→ χ(1 + πm−1
P y), πP any element in P of P-adic order 1,

χ 1
2
the Legendre symbol mod P, and G(., .) the classical Gauss sum.

Remark 1.4. — It is interesting to compare the formulas of Theorems 1.1
and 1.3 to the formulas for m = 1 given in [5]; it seems that for m = 1 the
formulas depend more on subtle information of the Bernstein-Sato polynomial
of f .
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