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NOTES & DÉBATS

IT’S NOT THAT THEY COULDN’T

Reviel NETZ (*)

It’s not that she couldn’t,
It’s not that she wouldn’t,
And you know–it’s not that she shouldn’t:
It’s just that she is
The laziest gal in town.

Cole Porter

ABSTRACT. — The article offers a critique of the notion of ‘concepts’ in the history
of mathematics. Authors in the field sometimes assume an argument from conceptual
impossibility: that certain authors could not do X because they did not have concept Y.
The case of the divide between Greek and modern mathematics is discussed in detail,
showing that the argument from conceptual impossibility is empirically as well as
theoretically flawed. An alternative account of historical diversity is offered, based
on self-sustaining practices, as well as on divergence being understood not in terms
of intellectual values themselves (which may well be universal) but in terms of their
rankings within different cultures and epochs.

RÉSUMÉ. — CE N’EST PAS QU’ILS N’AURAIENT PAS PU. — Cet article offre une
critique de la notion de “concepts” en histoire des mathématiques. Certains historiens
s’appuient parfois sur un argument mettant en avant une impossibilité conceptuelle,
du style: certains auteurs ne pouvaient pas faire X, parce qu’ils n’avaient pas le
concept Y. Nous discutons en détail ce que cela signifie dans le cas de la différence entre
mathématiques grecques et mathématiques modernes. Nous montrons que l’argument
de l’impossibilité conceptuelle est empiriquement et théoriquement peu solide. Pour
rendre compte de la diversité historique, l’article offre une alternative fondée sur des
pratiques qui s’auto-entretiennent et sur la notion de divergence interprétée non en
termes des valeurs intellectuelles elles-mêmes (qui pourraient bien être universelles),
mais des rangs que ces valeurs occupent dans différentes cultures et époques.
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Is mathematics always the same? If not, why? Historians of mathemat-

ics keep returning to these fundamental questions. The very question of

what is ‘the same’ in mathematics is not easy to answer. After all, math-

ematicians have always shown the surprising fact that things that appear

different are truly–seen under the appropriate perspective–the same: not

only in the twentieth century’s hunt for isomorphism, but starting with

such observations that the squares on the two sides of the right-angled

triangle are, in some sense, the same as the square on the hypotenuse. . . 1

It is thus natural, faced with an alien piece of mathematics, to show that

it is ‘the same’, in some mathematical sense, with a certain subset of

contemporary mathematics. This gives rise to the following set of objects:

OPM– an Old Piece of Mathematics,

CPM– a Contemporary Piece of Mathematics (to which OPM is equiva-

lent),

CM– the entirety of Contemporary Mathematics (of which CPM is no

more than a subset).

At this stage, the historian who wishes to say that mathematics is not

always the same has two related routes open. One is to argue that while,

from a certain perspective, OPM and CPM are indeed equivalent, they are

also different enough from each other to merit the label ‘different’.2 This

however seems weak on its own: no one ever denied the difference, but the

question is, why should this difference matter once the basic equivalence

is perceived? After all–is this not a mere matter of notation? Hence the

second route: to argue that CPM is a subset of CM for a good reason: the

way in which the mathematics of OPM was done made it impossible to do

any mathematics but OPM, and so the modern equivalent to OPM can

be CPM alone, and not CM as a whole. Mathematics is not always the

same because, at different periods, different kinds of mathematics were

possible. Transforming OPM into its contemporary equivalent, CPM, is

1 [Goldstein 1995] is a fundamental study of ‘the same’ in mathematics, dedicated to
the question: when are different mathematical proofs and propositions ‘the same’?

2 It is in fact difficult to define the ‘equivalence’ operative in this case. The standard
example–the equivalence of Euclid’s Elements II with algebraic equations–seems to
suggest a meaning of ‘equivalence’ along the following lines: historians of mathematics
often take two theorems to be equivalent when, from the perspective of the modern
mathematician, the proof of any of the theorems serves to show, simultaneously, the
truth of the other.
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misleading: it obscures the idiosyncratic features of OPM that blocked

it from becoming CM. No mere matter of notation, then: the difference

between OPM and CPM is historically explanatory.

Such was the form of the most famous twentieth century debate in

the historiography of mathematics. Unguru [1975] argued that Greek

mathematics differs from its modern equivalents; Freudenthal [1977] and

Weil [1978] had argued that this is a matter of notation only; Unguru

wrapped up the discussion in Unguru [1979] with wide-ranging historio-

graphical and indeed philosophical comments (more recently re-considered

and expanded in [Fried and Unguru 2001]). At the heart of Unguru’s

reply–which has now become, to varying degrees, the established view in

the community of historians of mathematics–lies the fundamental work

by Jacob Klein [1934/1936, 1968], Greek Mathematical Thought and the

Origins of Algebra. Klein’s thesis was that Greek mathematics, for deep

conceptual reasons, just could not become the same as modern mathemat-

ics, and must have had the form of dealing with the synthesis of isolated

geometrical problems (instead of systematic algebraic analyses). Why?

Because the Greeks did not possess the right kind of concepts: for alge-

bra, one needs second-order concepts that refer to other concepts, but the

Greeks had only first-order concepts, referring directly to reality. But let

us leave aside the details of Klein’s thesis and concentrate on the form

of the argument. Klein’s claim–the foundation of Unguru’s critique–was

that the difference in form between Greek mathematics and its modern

counterpart was historically explanatory: to wit, it explained why Greek

mathematics could not be modern. Why? Because modern mathematics,

in the Greek context, was conceptually impossible.

Once again: my interest in this article is not in the detail of Klein’s

historical thesis.3 I am interested in the form of the argument. I shall

call this the argument from conceptual impossibility. Its shape is: ‘for

conceptual reasons, X could not do Y’. In an important recent article,

‘Conceptual Divergence–Canons and Taboos–and Critique: Reflections on

Explanatory Categories’, Jens Hoyrup [forthcoming] had challenged the

very argument from conceptual impossibility. According to Hoyrup, we

3 I have discussed Klein’s thesis in detail in [Netz forthcominga], where I argue that
the difference Klein had noticed–between a more ‘isolated’ and ‘qualitative’ approach
in Greek mathematics as opposed to a more ‘systematic’ and ‘quantitative’ approach
in modern mathematics can be explained in terms of changing mathematical practice.
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are too hasty to speak of ‘possibility’ and ‘impossibility’, and we tend

to draw the border between them too neatly. This article is written so

as to support, qualify and I hope to complement Hoyrup’s. In the first

section I shall give several examples for what is typically taken to be

the fundamental divide between ancient and modern mathematics: the

more ‘algebraical’ or ‘arithmetical’ nature of modern mathematics. I shall

show that it’s not that they couldn’t: Greek mathematicians could, and did

on occasion, produce a more ‘arithmetical’ kind of mathematics. In the

second section I shall consider together the examples from the first section,

showing how, even absent the argument from conceptual impossibility, the

difference between ancient and modern mathematics remains important.

I shall also return to set out in more detail Hoyrup’s account as well as

my own, complementary historiographical approach.

1. THE NON-ARITHMETICAL CHARACTER OF

GREEK MATHEMATICS

In what follows I draw upon several recent studies on Greek mathe-

matics that, taken together, show the inadequacy of the argument from

conceptual impossibility: wherever we look, we find exceptions to the rule

of the non-arithmetical character of Greek mathematics. The moral, how-

ever, is not that we should give up the picture of Greek mathematics as

non-arithmetical, but that we should give up the argument from concep-

tual impossibility.

What do we mean by the ‘non-arithmetical character of Greek math-

ematics’? Several different things: arithmetical and numerical questions

are less important than they are in other mathematical traditions; geo-

metrical objects (which are the focus of interest) are understood in a

non-quantitative way. Finally, the arithmetical system itself is patchy.

It completely lacks the coherent structure of its modern counterpart, both

in mathematical structure (where we have the well-understood logical

sequence from integers through positive rationals and reals, and through

negatives, to complex numbers) and in symbolism (where we use the deci-

mal positional system). To the Greek, numbers are mysterious and clumsy

to handle; to us, they are fully brought under the control of logic and are

easy to deal with. Let us begin to note some exceptions to this picture.
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1.1. Fractions

One central perceived difference between Greek and modern concep-

tions of number has to do with fractions. It has been argued in recent

studies that the Greeks did not possess the concept of a common fraction,

using instead either unit-fractions or ratios ([Knorr 1982], [Fowler 1992]).

What we refer to as ‘three over five’, a numerical value, would be for them

either unit fractions, that is, ‘a half and a tenth’ (a sum of numerical val-

ues) or a ratio, that is ‘the ratio of three to five’ (not a numerical value

at all, but a relation). There is a mass of evidence where Greek mathe-

maticians treat fractions in just this way–an evidence which seems to go

beyond notational differences into mathematical practice itself: common

fractions, unlike other representations of fractions, allow direct calculation

with fractions of the form ‘the nth of m multiplied by the qth of p gives

nqth of mp’. (This direct calculation serves to put ‘fractions’ on a par

with integers and in this way opens the way for the contemporary clear

logical structure.)

I move on to discuss a new study of this question by Jean Christianidis

[forthcoming]. Christianidis sets out from a quotation from David Fowler

that is very relevant to our concerns:

“Just one example of some operation such as the addition, subtraction,

multiplication, or division of two fractional quantities, expressed directly

as something like ‘the nth of m multiplied by the qth of p gives nqth

of mp’, and clearly unrelated, by context, to any conception in terms of

simple and compound parts, could be fatal to my thesis that we have

no good evidence for the Greek use or conception of common fractions.

I know of no such example” [Fowler 1987, pp. 264–265].

Christianidis then observes that Diophantus’ problem IV.36 contains

just that. Not indeed in numerical terms, but in terms of Diophantus’

‘syncopated algebra’. Still: Diophantus shows a clear sense of multipli-

cation of fractions where the numerator is multiplied by the numerator

and the denominator–by the denominator. Transcribing Diophantus’ syn-

copated algebra into symbolic algebra, the essence of Christianidis’ argu-

ment is that Diophantus, in IV.36, directly derives from the multiplication

of ‘(3x)/(x−3)’4 by ‘(4x)/(x−4)’ the form ‘(12x2)/(x2 +12−7x)’. While

4 The original for ‘(3x)/(x−3)’ was ‘number, three, in the part of: number, one, lacking
monads, three’, or perhaps (depending on how syncopated Diophantus’ original papyrus


