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2-DIMENSIONAL VERSAL S4-COVERS AND

RATIONAL ELLIPTIC SURFACES

by

Hiro-o Tokunaga

Abstract. — We introduce the notion of a versal Galois cover, and study versal S4-

covers explicitly. Our goal of this article is to show that two S4-covers arising from

certain rational elliptic surfaces are versal.

Résumé(S4-revêtements galoisiens versels de dimension2 et surfaces rationnelles elliptiques)
On introduit la notion de revêtement galoisien versel et on étudie explicitement

les S4-revêtements galoisiens. Le but de cet article est de montrer que deux S4-

revêtements galoisiens obtenus à partir de certaines surfaces elliptiques rationnelles

sont versels.

Introduction

Let G be a finite group. Let X and Y be normal projective varieties. X is called

a G-cover of Y if there exists a finite surjective morphism π : X → Y such that

the induced inclusion morphism π∗ : C(Y ) → C(X) gives a Galois extension with

Gal(C(X)/C(Y )) ∼= G, where C(X) and C(Y ) denote the rational function fields

of X and Y , respectively.

G-covers have been used in various branches of algebraic geometry and topology,

e.g., to construct algebraic varieties having the prescribed invariants, to study the

topology of the complement to a reduced plane algebraic curve, and so on. In this

article, our main concern is not applications of G-covers, but G-covers themselves.

One of fundamental problems in the study of G-covers is to give an explicit“bottom-

to-top” method in constructing G-covers from some geometric data of the base va-

riety Y or intermediate covers, i.e., covers corresponding to the intermediate field

between C(X) and C(Y ). This point of view resembles the constructive aspects of
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the inverse Galois problem: to construct a field extension of Q having a prescribed

group as its Galois group over Q.

In the investigation of the inverse Galois problem, many works have been done

about “generic polynomials or versal polynomials” for these twenty years (see [3]

for detail references, for example). The main purpose of this article is to make an

analogous geometric study of them. Let us begin with the definition of a versal G-

cover.

Definition 0.1. — A G-cover $ : X → M is said to be versal if it satisfies the following

property:

For any G-cover π : Y → Z, there exist a rational map ν : Z · · · → M and a Zariski

open set U in Z such that

(i) ν|U : U → M is a morphism, and

(ii) π−1(U) is birational to U ×M X over U .

Note that we do not assume any uniqueness for $ and ν. Also we do not assume

that ν is dominant. One could say that a versal G-cover is a geometric realization of

the Galois closure of a versal G-polynomial introduced in [1].

Intuitively, any G-cover is obtained as rational pull-back of $, if a versal G-cover

exists. It is known that a versal G-cover exists for any G (see [9], [10]). Concretely, let

n = #(G) and let X = (P1)n be the n-ple direct product of P1. By using the regular

representation of G, one can regard G as a transitive subgroup of Sn (the symmetric

group of n letters), and obtain a natural G-action on X by the permutation of the

coordinates. Let M := X/G be the quotient variety with respect to this action, and

we denote the quotient morphism by $ : X → M . Then we have

Theorem 0.1(Namba [9], [10]). — $ : X → M is a versal G-cover.

By Theorem 0.1, the existence of a versal G-cover is assured for any G. Namba’s

model, however, has too large dimension to use it to consider concrete problems. Also

his construction is “top-to-bottom,” i.e., the one to find a variety with a natural G-

action first, and then to take the quotient with respect to this action. This approach

is different from our viewpoint. This leads us to pose the following question:

Question 0.1. — Find a tractable versal G-cover (via a “bottom-to-top” construction

if possible).

In order to obtain a tractable versal G-cover, it is natural to consider such cover of

as small dimension as possible. To formulate our problem along this line, the notion

of the essential dimension of G introduced by Buhler and Reichstein in [1] is at our

disposal. The essential dimension of G gives the lower bound of dimensions of versal

G-covers and it is denoted by edk(G), where k is the base field of variety (k = C in our

case). We refer to [1] about details on edk(G), and put here some of the properties

and results about edC(G):
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– edC(G) = 1 if and only if G is either a cyclic group Z/nZ or a dihedral group

D2r (r: odd) of order 2r. Versal G-covers of dimension 1 are classically well-known

(see §2 or [1]).

– edC(G) = 2 for G = S4, A4, A5, S5, where Sn and An denote the symmetric and

alternating groups of n letters, respectively.

– edC(G) is equal to the smallest dimension of a versal G-cover (Theorem 7.5 in [1]).

The purpose of this article is to study versal S4-covers of dimension 2 as a first step

of the study of versal G-covers. In §1, we summarize for a method to deal with S4-

covers developed in [15]. In §2, we give two examples of S4-covers using this method.

We denote them by π431 : S431 → Σ431 and π9111 : S9111 → Σ9111. Both of them

are constructed from certain rational elliptic surfaces in a canonical way. Both of the

actions of the Galois groups S4 on S431 and S9111 are described by the language of

the Mordell-Weil groups of the corresponding elliptic surfaces by the same idea. Our

goal of this article is to prove the following:

Theorem 0.2. — Both π431 : S431 → Σ431 and π9111 : S9111 → Σ9111 are versal S4-

covers.

The rest of this article is devoted to proving this theorem. We first show that

π9111 is versal by using Tsuchihashi’s result in [17] in §3. In §4, we explain a method

for a top-to-bottom method in constructing of a versal G-cover by using a linear

representation of G. The method seems to be well-known to the specialists who are

working on generic polynomials or versal polynomials. In fact, it is essentially used

in [1]. Yet we put it here since we need it to prove the versality for π431. We give

several examples in §5 by using this method. In §6, we prove the versality for π431

by comparing S431 with an example in §5.

Acknowledgment. — Part of this work was done during the author’s visit to Professor

Alan Huckleberry under the support from SFB 237 in September 2001. The author

thanks Professor Huckleberry for his hospitality. He also thanks Dr. A. Ledet who

told him about the paper [1]. Many thanks go to the organizer of the conference

“Singularités franco-japonaises,” at CIRM for their hospitality.

1. S4-covers

In [15], the author has developed a method in studying Galois covers having S4

as their Galois groups. We here explain it briefly (see [15] for a proof). For a finite

surjective morphism π : X → Y , the branch locus of π is the subset of Y given by

{y ∈ Y | π is not locally isomorphic over y}.
We denote it by ∆(X/Y ) or ∆π .

Let π : X → Y be an S4-cover. Let V4(∼= (Z/2Z)⊕2) be the subgroup given by

{1, (12)(34), (13)(24), (14)(23)},
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and let C(X)V4 be the V4-invariant subfield of C(X). We denote the C(X)V4-

normalization of Y by D(X/Y, V4). There are canonical morphisms:

β1(π, V4) : D(X/Y, V4) −→ Y, β2(π, V4) : X −→ D(X/Y, V4).

Note that β2(π, V4) is a (Z/2Z)⊕2-cover, while β1(π, V4) is an S3-cover, where S3

denotes the symmetric group of 3 letters.

Proposition 1.1. — Let f : Z → Y be an S3-cover of Y . Suppose that Z is smooth

and there exist three different reduced divisors, D1, D2 and D3 on Z satisfying the

following conditions:

(i) There is no common component among D1, D2 and D3. Put Gal(Z/Y ) =

S3 = 〈σ, τ | σ2 = τ3 = (στ)2 = 1〉, then (i − a) Dσ
1 = D2 and Dσ

3 = D3, and (i − b)

Dτ
1 = D2, Dτ

2 = D3, Dτ
3 = D1. (Dσ and Dτ denote the pull-back of D by σ and τ ,

respectively).

(ii) There exists a line bundle, L, such that D1 is linearly equivalent to 2L.

Then there exists an S4-cover π : X → Y satisfying (i) D(X/Y, V4) = Z and (ii)

∆(X/Z) = Supp(D1 + D2 + D3).

2. S4-covers arising from certain rational elliptic surfaces

In this section, we make use of various results in the theory of elliptic surfaces

freely in order to construct two example which play main roles in this article. See for

[4], [6], [7] and [13] for the details about the theory of elliptic surfaces. Note that

our method in this section can be generalized to any elliptic surface ϕ : S → P1 with

3-torsion

2.1. The surface S431. — Let ϕ : X431 → P1 be a rational elliptic surface obtained

by blowing up base points q : X431 → P2 of the pencil of cubic curves

Λ : {λ0(X0X1X2) + λ1(X0 + X1 + X2)
3 = 0}[λ0,λ1]∈P1 ,

where X0, X1, X2 are homogeneous coordinates of P2. The notation X431 is due

to [7]. It is known that ϕ : X431 → P1 satisfies the following properties(see [7]):

– The Mordell-Weil group, MW(X431), is isomorphic to Z/3Z; and we denote its

elements by O, s1 and s2.

– ϕ has three singular fibers and their types are of I1, I3 and IV ∗.

We may assume that the three singular fibers , s1 and s2 sit in X431 as in Figure 1

below. The curves O, s1, s2, C2,i (i = 0, 1, 2, 4, 5, 6) are the exceptional curves of q.

Let

– σϕ = the inversion morphism with respect to the group law

– τsi
= the translation by si.
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Figure 1

Both σϕ and τs1
are fiber preserving automorphisms on X431 such that σ2

ϕ = τ3
s1

=

(σϕτs1
)2 = 1. Hence σϕ and τs1

define an S3-action on X431. We put Σ431 = X431/S3,

and denote its quotient morphism by f431 : X431 → Σ431. On a smooth fiber of ϕ, this

S3-action is a natural one: the S3-action induced by the inversion and the translation

by a 3-torsion on an elliptic curve.

Lemma 2.1. — The S3-action on the singular fibers are described as follows:

I1-fiber: σϕ and τs1
give non-trivial automorphisms. By taking a suitable local

coordinate (z1, z2) around the node P , they are described as follows:

σϕ : (z1, z2) 7−→ (z2, z1),

τs1
: (z1, z2) 7−→ (ωz1, ω

2z2),

where P := (0, 0) and ω = exp(2π
√
−1/3).

I3-fiber: No irreducible component is pointwise fixed. σ∗
ϕ and τ∗

s1
permute the

irreducible components as follows:

σ∗

ϕ :

C1,0 7→ C1,0,

C1,1 7→ C1,2,

C1,2 7→ C1,1,

τ∗

s1
:

C1,0 7→ C1,2,

C1,1 7→ C1,0,

C1,2 7→ C1,1.

IV ∗-fiber: C2,4 is the unique component which is pointwise fixed by σϕ and no

irreducible component is pointwise fixed by τs1
. σ∗

ϕ and τ∗
s1

permute irreducible com-

ponents as follows:

σ∗

ϕ :
C2,1 7→ C2,6, C2,2 7→ C2,5, C2,3 7→ C2,3,

C2,4 7→ C2,4, C2,0 7→ C2,0,
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