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MATHEMATICAL BACKGROUND OF

PUBLIC KEY CRYPTOGRAPHY

by

Gerhard Frey & Tanja Lange

Abstract. — The two main systems used for public key cryptography are RSA and
protocols based on the discrete logarithm problem in some cyclic group. We focus on
the latter problem and state cryptographic protocols and mathematical background
material.

Résumé (Éléments mathématiques de la cryptographie à clef publique). — Les deux
systèmes principaux de cryptographie à clef publique sont RSA et le calcul de lo-
garithmes discrets dans un groupe cyclique. Nous nous intéressons aux logarithmes
discrets et présentons les faits mathématiques qu’il faut connâıtre pour apprendre la
cryptographie mathématique.

1. Data Security and Arithmetic

Cryptography is, in the true sense of the word, a classic discipline: we find it in

Mesopotamia and Caesar used it. Typically, the historical examples involve secret

services and military. Information is exchanged amongst a limited community in

which each member is to be trusted. Like Caesar’s chiffre these systems were entirely

symmetric. Thus, the communicating parties needed to have a common key which is

used to de- and encrypt. The key exchange posed a problem (and gives a marvellous

plot for spy-novels) but the number of people involved was rather bounded. This has

changed dramatically because of electronic communication in public networks. Since
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each pair of participants needs a secret key, a network of n users needs n(n − 1)/2

keys. Besides the storage problem, one cannot arrange a key exchange for each pair

of participants for the huge number of users in today’s networks. The solution to this

problem came in 1976 with the ground breaking paper by Diffie and Hellman [16].

They propose public key cryptosystems. This way, parties can agree on a joint secret

key over an insecure channel. This key is then used with modern symmetric ciphers

like AES [13]. The concept of public key cryptography relies heavily on one way

functions. We give an informal definition:

Definition 1.1. — Let A and B be two sets and f a map from A to B. f is a one way

function if one can “easily calculate” f(a) but for “essentially all” elements b ∈ Im(f)

it is “computationally infeasible” to find an a ∈ A such that f(a) = b.

In a public key cryptosystem, each member A of the network has two keys: a private

key sA produced by himself, never leaving the private secure environment and a public

key pA published in a directory. pA is related to sA by a (publicly known) one way

function. In a protocol, A uses both keys (and the public key of the partner B if

necessary). One has to ensure that the function to derive pA from sA is one way,

and the protocols have to be designed in a manner that there is no usable leakage of

information about sA, sB from the publicly accessible values.

Today, messages are stored and transmitted as numbers. This makes it possible

to apply Arithmetic to construct candidates for one way functions, to bring them in

such a shape that computation is fast, and to analyze possible attacks.

We shall concentrate on systems based on the Discrete Logarithm (DL). For a gen-

eral overview of applied cryptography including protocols see [42]. In this exposition

we can only outline the methods and mathematical facts used for designing secure and

efficient DL-Systems. Much more details both for the mathematical background, the

basic algorithms and their efficient implementation and the realisation of DL-systems

in hardware can be found in [4].

2. Abstract DL-Systems

To give mathematical sound definitions we first describe DL-systems in an abstract

setting. We give the minimal requirements needed for key exchange and signatures.

For the remainder of this section we assume that A ⊂ N (1) and that B ⊂ Endset(A),

the set of endomorphism of A. Hence, for any a ∈ A and any b ∈ B we have b(a) ∈ A.

(1)This is also important for practical application as one can represent a natural number as a string

of bits on a computer.
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2.1. Key Exchange. — Assume that the elements of B commute: for all a ∈ A
and b1, b2 ∈ B we have

b1(b2(a)) = b2(b1(a)).

Then we can use A,B for a key exchange system in the following way:

We fix a (publicly known) base point P0 ∈ A. Each participant Si chooses an

si ∈ B and publishes pi := si(P0). Then si(pj) = sj(pi) is the shared secret of Si

and Sj .

The security depends (not only) on the complexity to find for any randomly chosen

a ∈ A and a1, a2 ∈ B ◦ {a} all elements b ∈ B with b(a) = a1 modulo FixB(a2) =

{b ∈ B : b(a2) = a2}.
The efficiency depends on the “size” of elements in A,B and on the complexity of

evaluating b ∈ B.

2.2. Signature Scheme of El Gamal-Type. — In addition we assume that there

are three more structures:

(1) h : N → B, a cryptographic hash function(2)

(2) µ : A×A → C a map into a set C in which equality of elements can be checked

fast

(3) ν : B × B → D ⊂ Homset(A, C)

with ν(b1, b2)(a) = µ(b1(a), b2(a)) for all a ∈ A, bi ∈ B.

Signature. — Let a base point P0 ∈ A be given (or introduced as part as the public

key). Like before, each participant Si has his private key si(P0) and publishes his

public key pi.

To sign a message m, the signer Si chooses a random element k ∈ B and computes

φ := ν(h(m) ◦ si, h(k(P0)) ◦ k) ∈ D using the knowledge of his private key si. Then

he sends (φ, m, k(P0)) as the signature of the message m.

Verification. — The verifier V looks up si(P0), computes

µ
(
h(m)(si(P0)), h(k(P0))(k(P0))

)
,

and compares it to φ(P0).

The signature is valid if the results are equal.

2.3. The Most Popular Realization. — In practice we often encounter the fol-

lowing situation: Let p be a prime and consider an injective map (Z/p, +)
f−→ N. Let

A = Im(Z/p) be the image of f . A becomes a group with the composition ⊕ by the

rule:

a1 ⊕ a2 := f(f−1(a1) + f−1(a2)).

(2)We require h to be one way and collision resistant.
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Note that in general ⊕ does not coincide with the usual addition in N. For an element

P ∈ A we define

kP = P ⊕ P ⊕ · · · ⊕ P︸ ︷︷ ︸
k times

.

We require ⊕ to be computable in A, i.e. without going back to Z/p. Then A with

the operation ⊕ is called a group with numeration.

We show how this matches with our previous definitions.

Choose f(0 + pZ) 6= P0 ∈ A. The set B = AutZ(A) ∼= (Z/p)∗ is identified with

{1, . . . , p − 1} via b(P ) := bP . We let C = A, µ = operation ⊕ in A, ν = addition of

endomorphisms, and h = a hash function from N to {1, . . . , p − 1}.
Signature scheme. — We translate the abstract scheme to this situation: S chooses

randomly and secretly, his private key s ∈ {1, . . . , p− 1} and publishes his public key

PS := sP0. This key pair is used for many messages.

To sign a message m, S chooses a random number k, which is only used for this

one message, and computes

r := h(m)s + h(kP0)k mod p.

The signed message consists of (m, kP0, r).

To check the authenticity of the message one looks up S’s public key and computes

R = rP0, T = h(m)PS , H = h(kP0)kP0.

and checks whether

R = T ⊕ H.

The security considerations for the crypto primitive boil down to estimating the

complexity of computing Discrete Logarithms:

The Discrete Logarithm Problem (DLP) is as follows: For a given cyclic group with

numeration A and for randomly chosen P, Q ∈ A compute k ∈ N with Q = kP .

We need to construct groups with numerations of large prime order p, which are

secure and efficient. Note, that these aims can be contradictory. One requires that the

time or space needed (probabilistically) to compute discrete logarithms is exponential

in log(p). But time and space needed to write down the elements and to execute a

group composition must be polynomial in log(p).

2.4. Generic Attacks. — We have motivated that for some protocols it is useful

to use the algebraic structure “group”. However, every additional structure opens the

door to attacks. Assuming no special properties of A, i.e. dealing with a so-called

black-box group allows “generic” attacks. Shoup [55] proved that such a black-box

group has security at least
√
|A|. We present two algorithms having this complexity.

To solve the DLP on input Q = kP , both aim at retrieving an equality between

multiples of P and Q. From m1Q = m2P one obtains k ≡ m2/m1 mod p. Since

these algorithms are inevitable we say that a group is suitable for cryptographic

SÉMINAIRES & CONGRÈS 11
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applications, if only these algorithms (or ones with similar running-time) apply. As

one is able to find such suitable instances, one should avoid using groups with more

powerful attacks unless they offer special advantages like easier implementation or

faster algorithms, but a careful security analysis is needed.

Shanks’ Baby-Step-Giant-Step Method. — This method is a deterministic algorithm

to solve the DLP, first proposed by Shanks [54].

– Baby step: For i = 0, . . . , m 6
√

p compute (i · P, i). These values are stored in

a list ordered by the first argument.

– Giant step: For j = 0, . . . , m 6
√

p compute (Q − jm · P, j).

Then one compares the two lists looking for matching pairs. (In practice only one

list is stored and each result of the giant step is compared to this.) If i ·P = Q−jm ·P
then k = i + jm and we have solved the DLP. This algorithm has complexity O(

√
p)

but there is a disadvantage – it needs O(
√

p) space.

Pollard’s ρ-Algorithm. — Pollard’s algorithm [48] is a probabilistic algorithm in the

sense that the output is always correct but the computations involve random choices

and thus the complexity analysis involves probability assumptions.

The principle behind this algorithm is that for randomly drawn elements of G the

expected number of draws before an element is drawn twice is
√

πp/2 due to the

birthday paradox. To get information out of this we use a controlled random walk,

which we now present in the simplest version: The result xi of the i-th step should

depend only on xi−1. So partition the group “randomly” into three sets Tj of size

≈ p/3 and take

xi = P + xi−1 if xi−1 ∈ T1,

xi = Q + xi−1 if xi−1 ∈ T2,

xi = 2xi−1 if xi−1 ∈ T3.

There are efficient methods to detect collisions. Like Shanks’ method this algorithm

has complexity O(
√

p) but requires far less memory.(3)

Security hierarchy. — To have a more precise statement on the complexity of algo-

rithms we measure it by the function

Lp(α, c) := exp(c(log p)α(log log p)1−α)

with 0 6 α 6 1 and c > 0.

The best case for a cryptosystem is α = 1 – then one has exponential complexity,

this means that the complexity of solving the DLP is exponential in the binary length

of the group size log p. The worst case is when α = 0 – then the system only has

polynomial complexity. For 0 < α < 1 the complexity is called subexponential.

(3)Using such generic low storage methods the current “world record” w.r.t. Certicom challenge was

solved: Compute DL in an 109-bit elliptic curve over a prime field.
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