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ALGORITHMS AND MODULI SPACES FOR DIFFERENTIAL

EQUATIONS

by

Maint Berkenbosch

Abstract. — This article discusses second and third order differential operators. We
will define standard operators, and prove that every differential operator with finite
differential Galois group is a so-called pullback of some standard operator. We will
also give an algorithm concerning certain field extensions, associated with algebraic
solutions of a Riccati equation.

Résumé(Algorithmes et espaces modulaires pour les équations différentielles)
Cet article s’intéresse aux opérateurs différentiels de deuxième et troisième ordre.

Nous introduisons une notion d’opérateur standard, et montrons que tout opérateur
différentiel de groupe de Galois différentiel fini est image inverse d’un opérateur stan-
dard. Nous donnons aussi un algorithme concernant certaines extensions de corps,
associées à des solutions algébriques d’une équation de Riccati.

1. Field extensions for Riccati solutions

In this section we consider second order linear differential equations of the form

L : y′′ = ry, r ∈ k(x). Here k(x) is a differential field of characteristic zero, with

derivation d
dx . The field of constants k is not supposed to be algebraically closed.

We will denote its algebraic closure by k̄. The differential Galois theory gives us

an extension k̄(x) ⊂ K, with K the so called Picard-Vessiot extension, which is the

minimal differential field extension of k(x) which contains a basis {y1, y2} (over k̄) of

solutions of L. The solution space k̄〈y1, y2〉 := ky1 + ky2 ⊂ K will be denoted V .
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2 M. BERKENBOSCH

The automorphisms of K/k̄(x) which commute with the differentiation constitute the

differential Galois group G.

An interesting class of solutions are the so called Liouvillian solutions. These are

solutions which lie in a Liouvillian extension of k̄(x), which roughly means they can

be written down quite explicitly. For a precise definition of a (generalized) Liouvillian

extension, see [Kap76, p. 39]. Related to this is the Riccati equation, denoted RL,

which is an equation depending on L with as solutions elements of the form u = y′

y ,

with y a solution of L. In our case it is the equation u2 + u′ = r. We have the

following facts (see [vdPS03, p. 35,104]).

Fact 1.1. — u ∈ K is a solution of RL ⇐⇒ u = y′

y , for some y ∈ V .

Fact 1.2. — u = y′

y is a solution of RL, algebraic of degree m over k̄(x) ⇐⇒ The

stabilisor in G of the line k̄ · y is a subgroup of index m.

The next fact is concerned with Liouvillian solutions of L.

Fact 1.3. — L has a Liouvillian solution ⇐⇒ RL has an algebraic solution.

Let u be an algebraic solution of RL of minimal degree over k(x). We define

the field k′ to be the minimal field in k such that the coefficients of the minimal

polynomial of u over k̄(x) are elements of k′(x). We want to determine k′ as explicit

as possible. In [HvdP95] bounds on the degree [k′ : k] are given, depending on the

differential Galois group G of L. We consider G as a subgroup of GL2(k̄) by its action

on y1, y2. It is known that G is an algebraic subgroup of GL2(k̄). Note that changing

the basis {y1, y2} changes G by conjugation. Because in our equation L there is no

first order term, we actually have that G lies in SL2(k̄), see [Kap76, p. 41]. We have

the following lemma, which is essentially Theorem 5.4 of [HvdP95].

Lemma 1.4. — There are only three cases, with respect to G, for which k′ can be

different from k. These are (on an appropriate basis):

(1) G ⊂
{(

a 0

0 a−1

)
| a ∈ k̄∗

}
,#G > 2, a subgroup of a torus.

(2) G = DSL2
2 , a group of order 8, with generators

(
i 0

0 −i

)
,

(
0 −1

1 0

)
.

(3) G = ASL2
4 , a group of order 24.

We remark that in [HvdP95], the group DSL2
2 is mistakenly denoted by D4. We

have D4 6= DSL2
2 , and in fact DSL2

2
∼= Q8, where Q8 denotes the quaternion subgroup

{±1,±i,±j,±k} ⊂ H∗. The notations DSL2
2 and ASL2

4 can be explained as follows.

Using the natural homomorphism SL2 → PSL2, these groups are the inverse image of

D2 ⊂ PSL2 and A4 ⊂ PSL2 respectively. We will treat these three cases separately.
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1.1. Subgroups of a torus. — In this section we consider case (1) of Lemma 1.4.

There are exactly two G-invariant lines in V . These correspond to the two solutions

of RL in k̄(x). Such solutions are called rational.

For the next lemma we need to introduce the second symmetric power of a given

differential equation. This is the differential equation with as solutions, all products

of two solutions of the given equation. For example take L : y′′ = ry, with as basis

of solutions {y1, y2}. Then the second symmetric power of L, denoted Sym(L, 2)

is the equation y′′′ − 4ry′ − 2r′y = 0. It has {y2
1 , y1y2, y

2
2} as a basis of solutions.

Indeed, {y2
1, y1y2, y

2
2} are linearly independent over k (compare [SU93, Lemma 3.5]).

In a similar way one defines higher order symmetric powers Sym(L, n) (see [vdPS03,

Definition 2.24]), which we will use later on. We note that Sym(L, n) can have order

smaller than n+ 1. In the proof of the next lemma, we will also use that there is an

action of Gal(k̄/k) on K, which induces an action on V . It acts in the standard way

on k̄(x). For details see [HvdP95].

Lemma 1.5. — Assume we are in case (1) of Lemma 1.4. Then Sym(L, 2) has (up to

constants) a unique non-zero solution H ∈ k(x). If one of the two rational solutions

of R does not lie in k(x), then the rational solutions of R are H′

2H ± cH−1, for some

c ∈ k \ k, c2 ∈ k.

Proof. — For the basis {y1, y2} for which the representation of G in SL2 is as in

1. we have that y1y2 is G invariant, so y1y2 ∈ k̄(x). It is easily seen that up to

constants, this is the only G-invariant solution of Sym(L, 2). For σ ∈ Gal(k̄/k) we

have that σ(y1y2) is another rational solution of the symmetric square, so it must be

a multiple of y1y2. Therefore we have a Gal(k̄/k)-invariant line, and thus by Hilbert

theorem 90 an invariant point on this line. After multiplying y1 by a constant, we

may suppose H := y1y2 ∈ k(x). Then H′

H =
y′

1

y1
+

y′

2

y2
. The rational solutions of R

are
y′

1

y1
and

y′

2

y2
, and since Gal(k̄/k) acts on the set of solutions of R, each one is fixed

by a subgroup of Gal(k̄/k) of index ≤ 2. Now assume this index is 2, then we can

write
y′

1

y1
=: u =: u0 + du1, u0, u1 ∈ k(x), d2 ∈ k, d /∈ k, and then

y′

2

y2
= u0 − du1, so

H′

H = 2u0. From u′ + u2 = r ∈ k(x) one deduces that 2u0 = −u′

1

u1
, so u1 must be

λH−1, λ ∈ k∗. Therefore we can take c = dλ, and clearly
y′

2

y2
= H′

2H − cH−1.

We note that this gives a way to find in case (1) the rational solutions of the Riccati

equation. Indeed H can be found (for example using Maple), and c can be calculated

by substituting H′

2H + cH−1 into the Riccati equation.

1.2. Klein’s theorem. — In the remaining two cases of Lemma 1.4, the differential

Galois groups are finite. This implies that the differential Galois group equals the

ordinary Galois group. An important tool in studying these cases is Klein’s Theorem.

We present a version of it suggested by F. Beukers. For a different approach we refer

to [BD79].
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It will be convenient to use differential operators. These are elements of the skew

polynomial ring k̄(x)[∂x]. The multiplication is defined by ∂xx = x∂x + 1. We will

identify the linear differential equation Σiaiy
(i) = 0 with the differential operator

Σiai∂
i
x.

We recall from [HvdP95] the following easy lemma.

Lemma 1.6. — The k̄-algebra homomorphisms φ : k̄(t)[∂t] → k̄(x)[∂x] are given by

φ(t) = a and φ(∂t) = 1
a′
∂x + b with a ∈ k̄(x) \ k̄; a′ := d

dxa and b ∈ k̄(x).

Notation 1.7

– For F ∈ k̄(x)\k̄ we define the k̄-homomorphism φF : k̄(t) → k̄(x), by φF (t) = F .

– Let φ be an injective homomorphism φ : k̄(t) → k̄(x). Then we also write φ for

the extension of φ to the homomorphism of differential operators φ : k̄(t)[∂t] →
k̄(x)[∂x], defined by φ(∂t) = 1

φ(t)′ ∂x.

– For F ∈ k(x) \ k, b ∈ k̄(x), we define φF,b : k̄(t)[∂t] → k̄(x)[∂x] by φF,b(t) = F ,

φF,b(∂t) = 1
F ′

(∂x + b).

– We will call an automorphism of k(t)[∂t], given by t 7→ t, ∂t 7→ ∂t + b a shift.

– For a differential operator L we define Aut(L) to be the group

{ψ ∈ Autk̄ k̄(t) | Norm(ψ(L)) = L}.

First we will discuss the process of normalization. A second order differential

operator L := a2∂
2 + a1∂ + a0 is said to be in normal form if a2 = 1 and a1 = 0.

We can put L into normal form, Norm(L), by dividing L by a2, and then applying

the shift ∂ 7→ ∂ − a1

2a2
. Note that normalization transforms the old solution space V

to f · V , with f ′ = a1

2a2
f . The operator remains defined over k(x), but the associated

Picard-Vessiot extension K changes if f /∈ K.

Klein’s theorem is concerned with differential operators L := ∂2
x − r with finite

non-cyclic differential Galois group G ⊂ SL2(k̄). If we again use the notation HSL2

for the inverse image in SL2 of a group H ⊂ PSL2, the possibilities for such G are (up

to conjugation): {DSL2
n , ASL2

4 , SSL2
4 , ASL2

5 }. In [BD79] we find for each such group G

a standard operator, denoted StG, which is in normal form, and has differential Galois

group G. These are:

St
D

SL2
n

= ∂2
t +

3

16

1

t2
+

3

16

1

(t− 1)2
− n2 + 2

8n2

1

t(t− 1)
,

St
A

SL2
4

= ∂2
t +

3

16

1

t2
+

2

9

1

(t− 1)2
− 3

16

1

t(t− 1)
,

St
S

SL2
4

= ∂2
t +

3

16

1

t2
+

2

9

1

(t− 1)2
− 101

576

1

t(t− 1)
,

St
A

SL2
5

= ∂2
t +

3

16

1

t2
+

2

9

1

(t− 1)2
− 611

3600

1

t(t− 1)
.
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The so-called local exponents of these standard equations are given by the following

table.

0 1 ∞
St

D
SL2
n

1
4 ,

3
4

1
4 ,

3
4 −n+1

2n ,−n−1
2n

St
A

SL2
4

1
4 ,

3
4

1
3 ,

2
3 − 1

3 ,− 2
3

St
S

SL2
4

1
4 ,

3
4

1
3 ,

2
3 − 3

8 ,− 5
8

St
A

SL2
5

1
4 ,

3
4

1
3 ,

2
3 − 2

5 ,− 3
5

In the proof of Klein’s Theorem we will need the following lemma.

Lemma 1.8. — Let L be a monic second order differential operator over k(x), with

finite differential Galois group G, and Picard-Vessiot extension K. Let {y1, y2} be a

basis of solutions of L, and write s := y1

y2
.

(1) Normalizing L does not change the field Kp := k(x)(s) ⊂ K.

(2) Let L1 ∈ k(x)[∂x] be a monic differential operator, which also has a basis of

solutions in K of the form {sy, y}. Then L1 can be obtained from L by the shift

∂x 7→ ∂x − ( y
y1

)′/( y
y1

).

If moreover G is non-cyclic and G ⊂ SL2(k), then also the following state-

ments hold.

(3) Kp = K±I, the fixed field of −I in K.

(4) K = Kp(
√
s′).

(5) k(s) is G-invariant and ∃ t ∈ k(x) such that k(s)G = k(t).

Proof

(1) This follows immediately from the fact that the normalization of L has a basis

of solutions {fy1, fy2} (for some f with f ′

f ∈ k(x)).

(2) The monic differential operator φx,−( y
y1

)′/( y
y1

) clearly has {sy, y} as a basis of

solutions, and therefore is equal to L1.

(3) Since k̄(x) ⊂ k(x)(y1, y2) is a finite extension, we have y′1, y
′
2 ∈ k(x)(y1, y2),

so K = k(x)(y1, y2). Because Kp is algebraic over k̄(x) the derivation on K induces

a derivation on Kp. So (y1

y2
)′ = d

y2
2
∈ k̄(x)(y1

y2
), where d = y′1y2 − y′2y1. It is easily

seen that d′ = 0, and d 6= 0, so d ∈ k
∗
. We find that y2

2 ∈ Kp and for a similar

reason also y2
1 ∈ Kp. So the only elements in G that fix k̄(x)(y1

y2
) are ±I. By Galois

correspondence Kp is the fixed field of {±I}.
(4) We have K = Kp(y2), and y2

2 = d
s′

, so K = Kp(
√
s′).

(5) From the G-action on k〈y1, y2〉 one immediately finds that k(s) is G-invariant.

Since k̄(s) is a purely transcendental extension of k̄ we get by Lüroth’s theorem that

the fixed field of G is also purely transcendental. So we can write k(s)G = k(t), and

because t ∈ K is invariant under G, we get t ∈ k(x).
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