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Abstract. — This paper is intended to serve as a general introduction to the theory of

Hurwitz spaces and as an overview over the different methods for their construction.

Résumé(Espaces de Hurwitz). — Cet article a pour but de donner une introduction

à la théorie des espaces de Hurwitz et un aperçu des différentes méthodes pour leur

construction.

1. Introduction

1.1. The classical Hurwitz space and the moduli of curves. — The classical

Hurwitz space first appeared in the work of Clebsch [Cle72] and Hurwitz [Hur91] as

an auxiliary object to study the moduli space of curves. Let X be a smooth projective

curve of genus g over C. A rational function f : X → P1 of degree n is called simple if

there are at least n− 1 points on X over every point of P1. Such a cover has exactly

r := 2g + 2n − 2 branch points. Let Hn,r denote the set of isomorphism classes of

simple branched covers of P1 of degree n with r branch points. Hurwitz [Hur91]

showed that the set Hn,r has a natural structure of a complex manifold. In fact, one

can realize Hn,r as a finite unramified covering

Ψn,r : Hn,r −→ Ur := Pr − ∆r,

where ∆r is the discriminant hypersurface. (Note that the space Ur has a natural

interpretation as the set of all subsets of P1 of cardinality r. The map Ψn,r sends the

class of a simple cover f : X → P1 to the branch locus of f .) Using a combinatorial

calculation of Clebsch [Cle72] which describes the action of the fundamental group

of Ur on the fibers of Ψn,r, Hurwitz showed that Hn,r is connected.
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Later Severi [Sev21] proved that for n ≥ g + 1 every curve X of genus g admits a

simple cover f : X → P1 of degree n. In other words, the natural map

Hn,r −→ Mg

which maps the class of the cover f : X → P1 to the class of the curve X is surjective.

Using the connectedness of Hn,r, Severi concluded that Mg is connected.

Although Mg is an algebraic variety and can be defined over Z, the proof of its

connectedness sketched above is essentially topological. It therefore does not immedi-

ately yield the connectedness of Mg⊗Fp for a prime p. In order to fill this gap, Fulton

[Ful69] gave a purely algebraic construction of the Hurwitz space Hn,r. In his theory,

Hn,r is a scheme, of finite type over Z, which represents a certain moduli functor. It is

equipped with a natural étale morphism Ψn,r : Hn,r → Ur which becomes finite when

restricted to Spec Z[1/n!]. In this setup, Fulton was able to prove the irreducibility of

Hn,r ⊗ Fp for every prime p > n, using the irreducibility of Hn,r ⊗C. With the same

reasoning as above, one can deduce the irreducibility of Mg ⊗ Fp for p > g + 1. (At

about the same time, Deligne and Mumford proved the irreducibility of Mg ⊗ Fp for

all p, using much more sophisticated methods.)

Further applications of Hurwitz spaces to the moduli of curves were given by Harris

and Mumford [HM82]. They construct a compactification H̄n,r of Hn,r. Points on

the boundary ∂H̄n,r := H̄n,r−Hn,r correspond to a certain type of degenerate covers

between singular curves called admissible covers. The map Hn,r → Mg extends to a

map H̄n,r → M̄g, where M̄g is the Deligne–Mumford compactification of Mg. The

geometry of this map near the boundary yields interesting results on the geometry

of M̄g.

1.2. Hurwitz spaces in Galois theory. — Branched covers of the projective line

have more applications besides the moduli of curves. For instance, in the context of the

regular inverse Galois problem one is naturally led to study Galois covers f : X → P1

with a fixed Galois group G. Here arithmetic problems play a prominent role, e.g.

the determination of the minimal field of definition of a Galois cover.

Fried [Fri77] first pointed out that the geometry of the moduli spaces of branched

covers of P1 with a fixed Galois group G and a fixed number of branch points car-

ries important arithmetic information on the individual covers that are parameter-

ized. Matzat [Mat91] reformulated these ideas in a field theoretic language and gave

some concrete applications to the regular inverse Galois problem. Fried and Völklein

[FV91] gave the following precise formulation of the connection between geometry

and arithmetic. For a field k of characteristic 0, let Hr,G(k) denote the set of iso-

morphism classes of pairs (f, τ), where f : X → P1
k is a regular Galois cover with r

branch points, defined over k, and τ : G
∼
→ Gal(X/P1) is an isomorphism of G with

the Galois group of f . Suppose for simplicity that G is center-free. Then it is proved

in [FV91] that the set Hr,G(k) is naturally the set of k-rational points of a smooth
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variety Hr,G, defined over Q. Moreover, we have a finite étale cover of Q-varieties

Ψr,G : Hr,G −→ Ur

whose associated topological covering map is determined by an explicit action of

the fundamental group of Ur (called the Hurwitz braid group) on the fibres of Ψr,G.

Using this braid action, it is shown in [FV91] that Hr,G has at least one absolutely

irreducible component defined over Q if r is sufficiently large. This has interesting

consequences for the structure of the absolute Galois group of Q, see [FV91].

In some very special cases one can show, using the braid action on the fibres of

Ψr,G, that Hr,G has a connected component which is a rational variety over Q and

hence has many rational points. Then these rational points correspond to regular

Galois extensions of Q(t) with Galois group G. For instance, [Mat91], §9.4, gives

an example with r = 4 and G = M24. This example yields the only known regular

realizations of the Mathieu group M24.

1.3. The general construction. — In [FV91] the Hurwitz space Hr,G is first

constructed as a complex manifold. It is then shown to have a natural structure of

a Q-variety with the property that k-rational points on Hr,G correspond to G-Galois

covers defined over k, but only for fields k of characteristic 0 (and assuming that G

is center-free). From the work of Fulton one can expect that there exists a scheme

Hr,G,Z of finite type over Z such that k-rational points correspond to tamely ramified

G-Galois covers over k for all fields k. Moreover, Hr,G,Z should have good reduction

at all primes p which do not divide the order of G. One can also expect that the

construction of Harris and Mumford extends to the Galois situation and yields a

nice compactification H̄r,G,Z of Hr,G,Z, at least over Z[1/|G|]. These expectations are

proved in [Wew98], in a more general context.

If the groupG has a nontrivial center, then the Hurwitz space Hr,G,Z is only a coarse

and not a fine moduli space. For instance, a k-rational point on Hr,G,Z corresponds

to a tame G-cover f : X → P1
k̄

defined over the algebraic closure of k. The field k

is the field of moduli, but not necessarily a field of definition of f . To deal with this

difficulty it is very natural to work with algebraic stacks.

The point of view of algebraic stacks has further advantages. For instance, even

if G is center-free, the construction of the Harris–Mumford compactification H̄r,G of

Hr,G becomes awkward without the systematic use of stacks. It also provides a much

clearer understanding of the connection of Hurwitz spaces with the moduli space of

curves with level structure, see [Rom02]. Finally, Hurwitz spaces as algebraic stacks

are useful for the computation of geometric properties of the moduli of curves, e.g.

Picard groups.

The present paper is intended to serve as a general introduction to the theory of

Hurwitz spaces and as an overview over the different methods for their construction.

For applications to arithmetic problems and Galois theory, we refer to the other

contributions of this volume.
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2. Hurwitz spaces as coarse moduli spaces

In this section we define the Hurwitz space Hr,G as a coarse moduli space, using

the language of schemes.

2.1. Basic definitions. — Let S be a scheme. By a curve over S we mean a

smooth and proper morphism X → S whose (geometric) fibres are connected and

1-dimensional. If X is a curve over S, a cover of X is a finite, flat and surjective

S-morphism f : Y → X , where Y is another curve over S. We denote by Aut(f) the

group of automorphisms of Y which leave f fixed.

A cover f : Y → X is called Galois if it is separable and the group Aut(f) acts

transitively on every (geometric) fibre of f . It is called tame if there exists a smooth

relative divisor D ⊂ X such that the following holds: (a) the natural map D → S is

finite and étale, (b) the restriction of f : Y → X to the open subset U := X −D is

étale, and (c) for every geometric point s : Spec k → D, the ramification index of f

along D at s is > 1 and prime to the residue characteristic of s. If this is the case,

the divisor D is called the branch locus of f . If the degree of D → S is constant and

equal to r, we say that the cover f has r branch points.

Let G be a finite group and X a curve over S. A G-cover of X is a Galois cover

f : Y → X together with an isomorphism τ : G
∼
→ Aut(f). Usually we will identify

the group Aut(f) with G.

Two G-covers f1 : Y1 → X and f2 : Y2 → X of the same curve X over S are called

isomorphic if there exists an isomorphism h : Y1
∼
→ Y2 such that f2 ◦ h = f1 and

g ◦ h = h ◦ g for all g ∈ G.

2.2. Suppose that S = Spec k, where k is a field. Then a curve X over S is uniquely

determined by its function field K := k(X). A cover f : Y → X corresponds one-to-

one to a finite, separable and regular field extension L/K (here ‘regular’ means that

k is algebraically closed in L). The cover f is Galois (resp. tame) if and only if the

extension L/K is Galois (resp. tamely ramified at all places of K which are trivial on

k).

2.3. Let us fix a finite group G and an integer r ≥ 3. For a scheme S, we denote by

P1
S the relative projective line over S. Define

Hr,G(S) := { f : X
G
→ P1

S | deg(D/S) = r }/∼=
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as the set of isomorphism classes of tame G-covers of P1
S with r branch points. If

S = Spec k then Hr,G is the set of G-Galois extensions of the rational function field

k(t), up to isomorphism.

2.4. The functor S 7→ Hr,G(S) is a typical example of a moduli problem. One would

like to show that there is a fine moduli space representing this functor, i.e. a scheme

H together with an isomorphism of functors (from schemes to sets)

Hr,G(S) ∼= HomZ(S,H).

Unfortunately, this is true only under an additional assumption (if and only if the

group G is center free). Fortunately, one can prove a slightly weaker result without

this extra assumption (see e.g. [Wew98]).

Theorem 2.1. — There exists a scheme H = Hr,G,Z, smooth and of finite type over Z,

together with a morphism of functors (from schemes to sets)

(1) Hr,G(S) −→ HomZ(S,H),

such that the following holds.

(i) Suppose there is another scheme H′ and a morphism of functors Hr,G(S) →

HomZ(S,H′). Then there exists a unique morphism of schemes H → H′ which

makes the following diagram commute:

Hr,G(S) //

''
N

N

N

N

N

N

N

N

N

N

N

HomZ(S,H)

��

HomZ(S,H′).

(ii) If S is the spectrum of an algebraically closed field then (1) is a bijection.

We say that the scheme H = Hr,G,Z is the coarse moduli space associated to the

functor S 7→ Hr,G(S), and call it the Hurwitz space for tame G-Galois covers of P1

with r branch points.

In particular the theorem says that for any algebraically closed field k the set

Hr,G(k) (i.e. the set of isomorphism classes of regular and tamely ramified G-Galois

extensions of k(t)) has a natural structure of a smooth k-variety Hr,G,k. For k of

characteristic zero this was first proved by Fried and Völklein, see [FV91]. In §4 we

will prove it for an arbitrary field k.

Let (f, τ) be a G-cover over a scheme S. It follows immediately from the definition

that the group of automorphisms of the pair (f, σ) is the center of G. It is a general

fact that a coarse moduli space representing objects with no nontrivial automorphisms

is actually a fine moduli space. Hence we deduce from Theorem 2.1:

Corollary 2.2. — Suppose that the center of G is trivial. Then (1) is a bijection for

all schemes S. In other words, the scheme Hr,G,Z is a fine moduli space.
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