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FORMALIZED PROOF, COMPUTATION, AND THE

CONSTRUCTION PROBLEM IN ALGEBRAIC GEOMETRY

by

Carlos Simpson

Abstract. — This is an informal discussion of how the construction problem in alge-

braic geometry, that is the problem of constructing algebraic varieties with various

topological behaviors, motivates the search for methods of doing mathematics in a

formal, machine-checked way. I also include a brief discussion of some of my work on

the formalization of category theory within a ZFC-like environment in the Coq proof

assistant.

Résumé(Les preuves formalisées, le calcul, et le problème de la construction en géométrie
algébrique)

Ceci est une discussion informelle de la façon dont le problème de la construc-

tion des variétés algébriques avec diverses comportements topologiques, motive la

recherche des méthodes formelles dans l’écriture des mathématiques vérifée sur ma-

chine. Aussi incluse est une discussion brève de mes travaux sur la formalisation de

la théorie des catégories dans un environnement « ZFC » en utilisant l’assistant de

preuves Coq.

It has become a classical technique to turn to theoretical computer science to

provide computational tools for algebraic geometry. A more recent transformation

is that now we also get logical tools, and these too should be useful in the study of

algebraic varieties. The purpose of this note is to consider a very small part of this

picture, and try to motivate the study of computer theorem-proving techniques by

looking at how they might be relevant to a particular class of problems in algebraic

geometry. This is only an informal discussion, based more on questions and possible

research directions than on actual results.

This note amplifies the themes discussed in my talk at the “Arithmetic and Dif-

ferential Galois Groups” conference (March 2004, Luminy), although many specific

points in the discussion were only finished more recently.
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c© Séminaires et Congrès 13, SMF 2006



368 C. SIMPSON

I would like to thank: André Hirschowitz and Marco Maggesi, for their invaluable

insights about computer-formalized mathematics as it relates to algebraic geometry

and category theory; and Benjamin Werner, M. S. Narasimhan, Alain Connes, Andy

Magid and Ehud Hrushowski for their remarks as explained below.

1. The construction problem

One of the basic problems we currently encounter is to give constructions of alge-

braic varieties along with computations of their topological or geometric properties.

We summarize here some of the discussion in [Sim04a].

Hodge theory tells us much about what cannot happen. However, within the

restrictions of Hodge theory, we know very little about natural examples of what

can happen. While a certain array of techniques for constructing varieties is already

known, these don’t yield sufficiently many examples of the complicated topological

behavior we expect. And even for the known constructions, it is very difficult to

calculate the properties of the constructed varieties.

This has many facets. Perhaps the easiest example to state is the question of

what collections of Betti numbers (or Hodge numbers) can arise for an algebraic

variety (say, smooth and maybe projective)? For the present discussion we pass

directly on to questions about the fundamental group. What types of π1 can arise?

We know a somewhat diverse-sounding collection of examples: lattices, braid groups

(in the quasiprojective case) [MT88], all kinds of virtually abelian groups, solvable

groups [SVdV86], plenty of calculations for plane complements of line arrangements

and other arrangements in low degrees [Lib82] [CO00] [ACT02], Kodaira surfaces,

many examples of non-residually finite groups [Tol93]. Which π1’s have nontrivial

representations? Recall for example an old result:

Theorem. — Any nonrigid representation of a Kähler group in PSL(2, C) comes by

pullback from a curve.

Conversely, there exist nonrigid representations of rank > 2 which don’t come by

pullback from curves. However, in a more extended sense all of the known examples

of representations come from rigid representations (which conjecturally are motivic)

and from representations on curves, by constructions involving Grothendieck’s “six

operations” (cf. [Moc03]). In particular, the irreducible components of moduli vari-

eties of flat connexions MDR which are known, are all isomorphic to moduli varieties

of representations on curves.

An early example of this phenomenon was Lawrence’s construction of represen-

tations of the braid group [Law90]. For braid groups or generalized mapping class

groups, Kontsevich has a conjecture dating from around 15 years ago, which would

give an explicit description of what all representations should be in terms of higher

direct images. (These two things should have been mentionned in [Sim04a]).
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Nonetheless, over general quasiprojective varieties it seems likely that there are

other “new” representations but that we don’t know about them because it is difficult

to master the computational complexity of looking for them.

An intermediate construction might be as follows: suppose we have a family

{Vt} of local systems on X , such that there is a closed locus Z ⊂ MDR(X) where

dimHi(Xy, Vt) jumps for t ∈ Z. Then the family {Riπ∗}t∈Z might be a compo-

nent of the moduli space of local systems on Y . Thus the whole topic of variation

of differential Galois groups could lead to some “semi-new” components in this way.

Nonetheless, this doesn’t go too far toward the basic question of finding cases where

there are lots of representations for a general reason.

2. Logic and calculation

The construction problem results in a complex logical and computational situa-

tion, not directly amenable either to pure theoretical considerations, or to brute-force

calculation. This could open up the road to a new type of approach, in a direction

which was forseen by the INRIA group in Rocquencourt, when they baptised their

research group “Logi-Cal”. The idea behind this name was that it is becoming neces-

sary to combine logic and calculation. The origins of this requirement lay in computer

science, exemplified for example by the notions of “proof-carrying code” and verified

and extracted programs. The “Logi-Cal” idea was very cogently explained by Ben-

jamin Werner in an exposé in Nice a few years ago, in which he described its possible

applications to pure mathematics using the example of the four-color theorem. He

explained that it would be good to have a proof of the four-color theorem which

combines computer verification of the theoretical details of the argument, with the

computer computations which form the heart of the proof. He said that we could hope

to have the whole thing contained in a single document verified by a single program.

In a spectacular advance, this project has recently been completed by G. Gonthier,

who gives a full computer-verified proof of the four-color theorem in Coq [Gon04].

Thomas Hales’ “Flyspeck project” [Hal] is another current example of a project in

the direction of using computer proof techniques to combine theory with calculation,

in that case for the proof of the Kepler conjecture.

It seems clear that this very nice idea should have repercussions for a much wider

array of topics. The possibility of combining logic and computation will open up new

routes in algebraic geometry. This is because there are questions such as those related

to the construction problem above, which are susceptible neither to pure reasoning

nor to pure computation. At this conference Andy Magid mentionned an interesting

case: he had tried some time ago to compute examples of positive-dimensional repre-

sentation varieties for finitely presented groups with more relations than generators

(cf. [AB00] [Gro89] [Cat96]). He reported that the computational complexity of
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the question (which depends on parameters like the number of generators, the num-

ber and length of the relations, and the value of n if we look for representations

in GL(n)) became overwhelming even for very small parameters. In the algebraic-

geometric case, we might want to take concrete varieties, compute presentations for

their fundamental groups (using braid-group techniques for example) and then com-

pute the representation spaces. Magid’s remarks suggest that a brute-force approach

to this computation will not be feasible. On the other hand, purely theoretical tech-

niques are unlikely to answer the most interesting question in this regard, namely: are

there new or exceptional examples which are not accounted for by known theoretical

reasons? Thus the interest of looking for a mixed approach combining theory and

computation. Implementation of such an approach could be significantly enhanced

by computer-formalized proof techniques providing an interface between theory and

calculation.

Another example seen in this conference was Ehud Hrushowski’s talk about al-

gorithmic solutions to the problem of computing differential Galois groups. While

showing that in principle there were algorithms to make the computation, it ap-

peared likely that the complexity of the algorithms would be too great to permit their

direct implementation. It would be good to have precise information about the com-

plexity of this kind of question. This undoubtedly would require substantial input

from algorithmic complexity theory. Some things are known for related problems, see

[vdDS84] for example. The known bounds tend to be be high, so again one would

like to envision a mixed approach in which theory provides shortcuts in determina-

tion of the answers. An interesting theoretical question is then to what extent there

is a relation between proof complexity for the theory part [Bus98], and algorithmic

complexity for the calculational part.

Of course mixing between theory and computation has always taken place within

mathematical work, a good example is [GP78]. There have also recently been ad-

vances in the use of algorithmic methods to attack problems such as the topology of

real varieties [Bas03] [BPR03]. The editor points out [Bro87] which constitutes a

striking example (for the case of the Nullstellensatz) where mathematical theory can

considerably improve computational bounds.

The relevance of computerized formulation of the theory part is that it might

well permit the process to go much farther along, as it would make available the

advances in computational power to both sides of the interaction. Currently we

can benefit from advanced computational power on the calculation side, but this

can outstrip the capacity of theory to keep up. This phenomenon was emphasized

by Alain Connes in his talk (and subsequent comments) at the PQR conference in

Brussels, June 2003. He pointed out that with computer algebra programs he could

come up with new identities which took pages and pages just to print out; and that

it would be good to have tools for interpreting this new information which often
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surpasses our classical human sensory capacities. It is possible that interface tools

could be of some help, but likely in the end that we would want to connect these

things directly to theoretical proof software—a step which might on some levels bypass

human understanding altogether.

A related area in which it might be useful to have a mixture of theory and compu-

tation when looking for construction results is the Hodge conjecture. There are many

concrete situations in which we expect to find certain algebraic cycles, but don’t

in general know that they exist. For example, the Lefschetz operators or Kunneth

projectors are automatically Hodge cycles. It would be interesting to take explicit

varieties and search for algebraic cycles representing these Hodge classes. As in the

search for representations, a brute-force approach would probably run out of steam

pretty fast, and it would be interesting to see what a mixed approach could attain.

A related question is the search for constructions of varieties where the Lefschetz or

Kunneth operators are topologically interesting, namely cases where the cohomology

is not mostly concentrated in the middle dimension.

Finally we mention a more vague direction. In the above examples we are looking

for constructions with a certain desired topological or geometrical behavior. However,

it may also be interesting to consider the question of what we get when we look

at an arbitrary algebraic-geometric construction process or algorithm. This type of

question is related to the field of dynamical systems, and has been popularized by S.

Wolfram. There are probably many places to look for interesting processes in algebraic

geometry. Insofar as a given process produces an infinite, combinatorially arranged

collection of output, it opens up questions of asymptotic behavior, and more generally

the arrangement of results with respect to measurable properties on the output, as

well as dependence on the algorithm in question. For this type of research it would

seem essential to have tools relating theoretical properties in algebraic geometry to

algorithmic questions.

3. The Bogomolov-Gieseker inequality for filtered local systems

We go back to look more closely at the computational issues in constructing rep-

resentations of algebraic fundamental groups. There are various different possible

approaches:

–construct the representations directly on a presentation of π1;

–construct directly the connections (E,∇) or the Higgs bundles (E, θ);

–in the quasiprojective case, construct directly parabolic bundles, logarithmic con-

nections, or “filtered local systems”.

Most work up to now on the first approach has already had the flavor of mixing

computation and theory [MT88] [PS02] [Lib82] [GLS98] [DN01] [Bro83]. For

the second and third approaches, there is a Bogomolov-Gieseker inequality lurking

about. The basic example is the classical 3c2 − c2
1 ≥ 0 for surfaces of general type,
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