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Abstract. — We introduce a special property, D-type, for rational functions of one
variable and show that it can be effectively used for a classification of the deforma-
tions of dessins d’enfants related with the construction of algebraic solutions of the
sixth Painlevé equation via the method of RS-transformations. In the framework of
this classification we present a pure geometrical proof, based on the analysis of sym-
metry properties of the deformed dessins, of the nonexistence of some special rational
coverings.

Résumé(Remarques pour une classification des transformations de typeRS
2

4
(3) et des so-

lutions algébriques de la sixième équation de Painlevé)
Nous introduisons une propriété spéciale, dite «de type D», pour les fonctions

rationnelles d’une variable et nous montrons comment celle-ci pourrait être utilisée
pour une classification des déformations de dessins d’enfants rattachée à la construc-
tion de solutions algébriques de l’équation de Painlevé VI via la méthode des RS-
transformations. Dans le cadre de cette classification nous donnons une démonstra-
tion, purement géométrique et basée sur l’analyse des symétries des dessins déformés,
de la non-existence de certains recouvrements rationnels.

1. Introduction

Recently the author introduced a general method of RS-transformations [15] for

special functions of the isomonodromy type (SFITs) [14]. This method applies to

SFITs defining isomonodromy deformations of linear n× n-matrix ODEs of the first

order with rational coefficients and with both regular and essential singular points.

RS-Transformations are just a proper combination of rational transformations (R-

transformations) of the independent variable of the linear ODEs and Schlesinger trans-

formations (S-transformation) of the dependent variable. Solutions of many different
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and seemingly unrelated problems from various areas of the theory of functions get

a unified and systematic approach in the framework of this method and can be re-

duced to the study, construction, and classification of different RS-transformations

for matrix linear ODEs.

This method, e.g., allows one to prove the duplication formula for the Gamma-

function (and most probably the general multiplication formula for the multiple argu-

ment [3]), build higher-order transformations for the Gauss hypergeometric function

and reproduce the Schwarz table for it [2, 17], construct quadratic transformations

for the Painlevé and classical transcendental functions [13, 16], and provide a sys-

tematical method for finding algebraic points at which transcendental SFITs attain

algebraic values [1]. Without doubt, many other interesting problems can be ap-

proached via the method of RS-transformations. In this paper we apply this general

method to the problem of construction and classification of algebraic solutions of the

sixth Painlevé equation.

Recently scanning the literature, I realized that, possibly, the first serious profound

result concerning RS-transformations was obtained by F. Klein [19], who proved that

any scalar Fuchsian equation of the second order with finite monodromy group is a

“pull-back” (R-transformation) of the Euler hypergeometric equation. In this context

instead of the S-transformations the notion of “projective equivalence” is used. The

latter is more restrictive than general S-transformations because in terms of the matrix

ODEs it corresponds to triangular Schlesinger transformations, that finally results in

a more restrictive special choice of the exponent differences (formal monodromy) of

the hypergeometric equation, than when more general S-transformations are allowed.

Klein’s result immediately implies that any solution of the Garnier system and, in

particular the sixth Painlevé equation that corresponds to a finite monodromy group

of the associated Fuchsian equation, is algebraic. It is important to mention that the

converse statement is not true.

In the context of the sixth Painlevé equation the first person who could, theoreti-

cally, apply the “pull-back ideology” was R. Fuchs because it was he who found that

the sixth Painlevé equation governs isomonodromy deformations of the certain scalar

second order Fuchsian ODE and, moreover, received an informative letter from F.

Klein. He actually did it, in a study of algebraic solutions in the so-called Picard case

of the sixth Painlevé equation [10, 11](1).

Recently appeared a paper by Ch. Doran [8] who formulated a more general scheme

(than that used by R. Fuchs) for construction of algebraic solutions of the sixth

Painlevé equation from the pull-back point of view. A more detailed account of the

last work is given in Introduction of [17]. In the following two paragraphs we explain

(1)These works were not known to me and, possibly, to most modern researchers until very recently,

when Yousuke Ohyama called our attention to them.
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why the method of RS-transformations for construction of the algebraic solutions is

more general than the pull-back back one.

For a given R-transformation one can normally associate a few different RS-trans-

formations, due to the possibility of choosing different (not related by the contiguity

transformations) initial hypergeometric equations, which suffer this R-transformation

and, by further application of proper S-transformations, are mapped into the Fuchsian

ODE with four regular points. Each of these RS-transformations generate an alge-

braic solution of the sixth Painlevé equation, which sometimes depends on a complex

parameter. Thus we have a finite number of algebraic solutions associated with each

rational function (R-transformation). On the other hand it is well known that on the

set of algebraic solutions acts the subgroup of RS-transformations with deg R = 1:

it is just a subgroup of compositions of Möbius transformations interchanging three

points 0, 1, and ∞, and those Schlesinger transformations that does not add singu-

larities to the Fuchsian ODE with four singular points. Thus the subset of algebraic

solutions associated with the same R-transformation generate a finite number of orbits

of the algebraic solutions with respect to the action of the subgroup mentioned above.

The minimal subset of algebraic solutions that generate these orbits are called the sub-

set of seed algebraic solutions, and RS-transformations that generate them – the seed

RS-transformations. The seed algebraic solutions corresponding to the same rational

covering (R-transformation) are different, by definition; however, the seed solutions

associated with different rational coverings can coincide. Furthermore, the seed so-

lutions, even corresponding to the same rational covering, can sometimes be related

by some compositions of the quadratic transformations and/or Bäcklund transforma-

tions. Since the quadratic transformations are generated by the RS-transformations

with deg R = 2, and one of the Bäcklund transformations has no realization as the

Schlesinger transformation of the 2 × 2-matrix Fuchsian ODE; we call this special

transformation the Okamoto transformation (see [20] and Appendix [17, 18]).

We call attention of the reader that the possibility of construction of different RS-

transformations starting from the same rational covering mentioned in the previous

paragraph is not considered by the successors of the“pull-back ideology”because of the

projective invariance property which assumes only one particular choice of the formal

monodromy of the initial hypergeometric equation. Therefore, the “pull-back results”

in many cases, namely in those ones where the property of projective equivalence can

be changed to a less restrictive condition of the existence of S-transformation, can be

extended or completed. We discuss this opportunity for construction of higher-order

transformations of the Gauss hypergeometric functions in the Remarks in Sections 4

and 5. However, it seems that the pull-back from the hypergeometric equation, due

to specific properties of the hypergeometric functions, is equivalent to the formally

more general method of RS-transformations. This fact we are planning to discuss in

a separate paper.
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This paper is a continuation of author’s previous work [17]. In [17] we give a general

definition of the one-dimensional deformations of dessins d’enfants and their relation

to the algebraic solutions of the sixth Painlevé equation, construct by this method

numerous examples of different algebraic solutions, and discuss different features of

this technique, e.g., a mechanism of appearance of genus-1 algebraic solutions. In

Section 2 we recall the facts from [17] which are necessary for understanding of this

work. Here we put this technique onto a systematic footing. A new idea we use here

is symmetry preserving and symmetry breaking deformations of the dessins d’enfants

and their relation to uniqueness of the corresponding rational covering.

More precisely, in Section 3 we introduce a notion of the divisor type (D-type) of

rational functions and classify all D-types of the rational functions that generate alge-

braic solutions of the sixth Painlevé equation via the method of RS-transformations

(R4(3)-functions). The divisor type represents a special numerical property of the

critical values of rational functions, more precisely, a property of the set of multiplic-

ities of preimages (ramification patterns) of the critical values. This set we call the

type (R-type) of a rational function. Note that because of our normalization (0 and

∞ are also the critical values) a specification of the divisor type also means a special

property of the divisor of zeroes and poles of our rational functions.

We call the D-series the set of all R4(3)-functions having the same D-type. Among

these D-series there are two ones with finitely many, actually a few, members. This

fact is proved and the corresponding rational functions are explicitly constructed in

Sections 4 and 5. Each of the other D-series, corresponding to the D-types specified

in the classification theorem of Section 3, are infinite.

It is worth noticing that modern personal computers (PC) allows one to construct

all rational coverings that are presented here and in [17] without any advanced al-

gorithms just by the natural method explained in Remark 2.1 of [17]. The time of

calculation with MAPLE code on a relatively powerful PC does not exceed 1 second

for any of these functions. Of course, finding the concise parametrization requires

much more additional time. It is interesting to note that in 1998-2000, when we used

exactly the same calculational scheme but on the Pentium 2 based PC with about 256

Mb RAM, we were not able to construct many interesting functions, even some Belyi

function of degree 8, see [2], we have found only numerically. This remark, however,

does not mean that we do not need any advanced calculational algorithms; explicit

construction of most of the rational coverings with the degree > 12 still represent

substantial difficulties.

To each R4(3)-function we also indicate the number of the seed RS-transformations

and present one algebraic solution whose construction does not require explicit form

of the related Schlesinger transformation. It is exactly the “pull-back” solution, to

get explicitly the other seed solutions one has to construct (explicitly) corresponding

S-transformations. This procedure is absolutely straightforward and does not require
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any advance computer algorithms and we do not consider it here. Numerous examples

of the complete constructions of RS-transformations are given in [1].

This paper is a far-going extension of the second part of my talk in Angers, where

I have only explained some simplest ideas concerning the concept of deformations

of the dessins d’enfants and announced the construction of the solution presented in

Section 4.

In the proofs of sections 4 and 5 we substantially use a graphical representation of

the rational functions introduced in [17], which we call the deformation dessins. The

reader should consult this work for a better understanding of these proofs, however

I hope that the general idea and the scheme of these proofs can be understood even

with the help of the following comments. In case, R4(3)-function exists there is at

least one graph, constructed according the rules given in [17], which represents it. In

the proofs of nonexistence of some rational functions we use the evident fact that if the

graph (the deformation dessin) does not exist, then clearly the rational function does

not exist. In case some deformation dessin exists, it defines R-type, the conjecture,

which is made in [17], says, that in this case rational function also exists. So, the

statement, of existence of certain rational mappings which is based on existence of

the deformation dessins is conventional and assumes the validity of this conjecture.

In fact, for all rational functions, which existence we claim, we give either explicit

formulae, or prove that they can be presented as the composition of explicitly known

functions. So, all our proofs of existence of rational functions are based on explicit

constructions and therefore also does not rely on any hypothesis.

Every deformation dessin can be obtained from a proper Grothendieck’s dessin

d’enfant as a result of the so-called face deformations: the join and cross. We con-

sider also one more face deformation which is called the twist, however the latter

can be treated as a special case of the join. We also consider vertex deformations,

however, they can be avoided, more precisely instead we can always consider proper

face deformations of an equivalent rational function transformed under a proper the

Möbius transforms.

Suppose that for a given R-type there exists a corresponding rational function.

Such rational function normally is not unique. Say, rational functions corresponding

to R4(3)-types often depends on one (sometimes on a few (!)) additional parameters.

Moreover, there always exists a parametrization of these functions that they become

rational functions of these additional parameters. Clearly, the latter parametrization

is not unique: we can make Möbius transformations of the independent variable of

our rational function with the coefficients depending on the additional parameters

and also substitutions of the additional parameters by rational functions of additional

parameters. However, even modulo such transformations the rational functions are

not uniquely defined by their R-types. Some light on this problem is brought by the
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