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ISOMONODROMY FOR COMPLEX LINEAR q-DIFFERENCE

EQUATIONS

by

Jacques Sauloy

Anyone who considers transcendental
means of producing Galois groups
is, of course, in a state of sin. (*)

Abstract. — The words “monodromy” and “isomonodromy” are used in the theory of
difference and q-difference equations by Baranovsky-Ginzburg, Jimbo-Sakai, Borodin,
Krichever,... although it is not clear that phenomena of branching during analytic
continuation are involved there. In order to clarify what is at stake, we survey
results obtained during the last few years, mostly by J.-P. Ramis, J. Sauloy and
C. Zhang. Links to Galois theory (as developped by P. Etingof, M. van der Put &
M. Singer, Y. André, L. Di Vizio...) are briefly mentioned. A tentative definition of
isomonodromy deformations is given along with some elementary results.

Résumé(Isomonodromie des équations auxq-différences complexes). — Les mots « mo-
nodromie« et « isomonodromie » ont été employés en théorie des équations aux diffé-
rences et aux q-différences par Baranovsky-Ginzburg, Jimbo-Sakai, Borodin, Kriche-
ver,... bien que, dans un tel contexte, n’apparaissent pas clairement des phénomènes
de ramification par prolongement analytique. Afin de clarifier ce qui est en jeu, nous
décrivons des résultats obtenus ces dernières années, principalement par J.-P. Ramis,
J. Sauloy et C. Zhang. Les liens avec la théorie de Galois (telle qu’elle a été développée
par P. Etingof, M. van der Put & M. Singer, Y. André, L. Di Vizio...) sont briève-
ment mentionnés. Une définition expérimentale de déformation isomonodromique est
proposée, ainsi que quelques résultats élémentaires.

0. Introduction

0.1. Roots. — In recent years, the words“monodromy”,“isomonodromy”have been

used in various places in the context of difference and q-difference equations, e.g., see

V. Baranovsky & V. Ginzburg ([6]), M. Jimbo & H. Sakai, drawing on previous results
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of Jimbo and Miwa ([21]), A. Borodin ([10]) and, more recently(1), I. Krichever ([22]).

However, in these contexts, it is not clear that problems of multivalued solutions and

branching at singularities are really involved, as it is the case in the classical setting

of linear differential equations in the complex plane. The goal of this survey, is to

summarize what can be said about an underlying geometry or topology of solutions

encoded in a monodromy group or a Galois group, even if the solutions are taken to be

uniform. We shall stick to q-differences, since the theory looks much better behaved

there than for differences. Moreover, we shall almost only refer to work conducted

under the impulse of Jean-Pierre Ramis, mostly by J.-P. Ramis, C. Zhang and the

author. Note that this is meant to be a survey paper: essentially no proofs are given.

On the other hand, for a survey with a broader scope, [14] is recommended.

While the prehistory of q-difference equations may be thought to have started with

Euler, the archetypal example certainly is Heine’s basic hypergeometric series, here

written for a “base” q ∈ C such that |q| > 1 (see [14]):

Φ(a, b, c; q, z) =
∑

n≥0

(a; p)n(b; p)n

(c; p)n(p; p)n
zn, where p = q−1 and (x; p)n =

n−1
∏

i=0

(1 − xpi).

It is a q-analogue of the Gauss hypergeometric series

F (α, β, γ; z) =
∑

n≥0

(α)n(β)n

(1)n(γ)n
zn, where (α)n =

n−1
∏

i=0

(α + i).

The most obvious analogy is that, if one takes a = pα, b = pβ , c = pγ and lets q go

to 1, then, the coefficients of the series defining Φ(a, b, c; q, z) tend to the coefficients

of the series defining F (α, β, γ; z).

A deeper analogy is related to functional equations. The function Φ = Φ(a, b, c; q, z)

is solution of a second order linear q-difference equation with rational coefficients, that

is, it satisfies a C(z)-linear relation on Φ(z), Φ(qz) and Φ(q2z). This relation can be

written in terms of the operator σq defined by σqφ(z) = φ(qz), thus giving rise to the

relation

(0.0.1) σ2
qΦ − λσqΦ + µΦ = 0 with















λ =
(a + b)z − (1 + c/q)

abz − c/q

µ =
z − 1

abz − c/q

.

(1)The ArXiv preprint by Krichever appeared one month after the Painlevé conference for which this

talk was prepared.
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It can also be given in terms of the operator δq defined by δqφ(z) =
φ(qz) − φ(z)

q − 1
. It,

then, takes the form

(0.0.2) δ2
qΦ − λ̃(q)δqΦ + µ̃(q)Φ = 0 with















λ̃(q) =
λ − 2

q − 1

µ̃(q) =
µ − λ + 1

(q − 1)2

.

If one brutally (or heuristically) replaces the operator δq by the Euler differential

operator δ = z d/dz, and the coefficients by their limit as q goes to 1, one finds the

corresponding hypergeometric differential equation satisfied by F = F (α, β, γ; z):

(0.0.3) δ2F − λ̃δF + µ̃F = 0 with











λ̃ =
(α + β)z + (1 − γ)

1 − z

µ̃ =
αβz

1 − z

.

Since this equation was the first instance of the so-called Riemann-Hilbert correspon-

dence, one would expect this limiting process to be reflected on the monodromy: the

general theory shall be mentioned in 1.3, this particular example being dealt with, in

full detail, in [35]. We shall rather use the operator σq and also rather use systems

than equations. For instance, putting X =

(

f

σqf

)

, we get the system

(0.0.4) σqX = AX with A =

(

0 1

−µ λ

)

∈ GL2(C(z)).

The modern history begins with the famous paper by Birkhoff about the so-called

generalized Riemann problem, [8]. There, he tackled what we perhaps would call

nowadays the Riemann-Hilbert problem of classifying differential equations by their

singularities and (loosely said) global geometric behaviour. For regular singular differ-

ential equations, the former are encoded in the local Jordan structure (generically, the

eigenvalues or exponents) and the latter means the monodromy representation or, in

less intrinsic terms, the knowledge of sufficiently many connection matrices. Birkhoff

showed that, to a large extent, the problem can be posed and solved in parallel for

differential, difference and q-difference equations. For definiteness, from now on, we

consider (as Birkhoff did) q-difference systems meromorphic over the Riemann sphere.

To be more precise, we first introduce some notations.

Throughout the text, q is a fixed complex number with modulus |q| > 1(2). We

also fix a τ ∈ H (the Poincaré half plane) such that q = e−2ıπτ . The field K of

(2)The opposite convention (that is, 0 < |q| < 1) holds equally often in the litterature, for instance in

[18]; some formulas or definitions (e.g., classical “basic” functions or the Newton polygon) do depend

on the chosen convention. The fundamental fact, if one wants to do some analysis, is that |q| 6= 1

(at least in the present state of our technology).
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coefficients is one of the following: the field C(z) of rational functions (global case),

the field C({z}) of convergent Laurent series meromorphic at 0 (analytic or convergent

local case) and the field C((z)) of formal Laurent series meromorphic at 0 (formal

local case); we understand meromorphic Laurent series to have finitely many negative

exponents. Any of these fields can be endowed with an automorphism σq defined by

(σqf)(z) = f(qz). A linear q-difference equation of order n may be written

(0.0.5) σn
q (f) + a1σ

n−1
q (f) + · · · + anf = 0 , a1, . . . , an ∈ K , an 6= 0.

By vectorializing, i.e., setting

(0.0.6)

X = Xf =
def











f

σqf
...

σn−1
q f











and A = Aa =
def















0 1 0 . . . 0

0 0 1 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . 1

−an −an−1 −an−2 . . . −a1















,

the equation (0.0.5) may be turned into a system

(0.0.7) σqX = AX , A ∈ GLn(K).

For any such equation or system with coefficients in the field K, one will look for

solutions in some K-algebra of functions A endowed with a dilatation operator σq

extending the one of K. One possible choice for A is the field M(C∗) of meromorphic

functions over C∗, with the natural operation defined by (σqf)(z) = f(qz). The

subalgebra of q-constants

Aσq =
def

{f ∈ A / σqf = f}

is then the field M(C∗)σq of q-invariant meromorphic functions. Letting z = e2ıπx,

we see that M(C∗)σq is isomorphic to the field of meromorphic functions over C with

periods 1 and τ , thus, to a field of elliptic functions. More geometrically, M(C∗)σq

can be identified in a natural way to the field M(Eq) of meromorphic functions

over the Riemann surface Eq = C∗/qZ. The latter is an elliptic curve, since the

exponential map x 7→ e2ıπx makes C a covering of C∗ and induces an isomorphism

C/(Z + Zτ) → Eq.

If we find a fundamental solution of (0.0.7) in A = M(C∗), that is, a matrix

X ∈ GLn(A) such that σqX = AX , then the vector solutions X ∈ An are exactly

the vectors XC with C ∈ (Aσq )
n
, that is, they form a vector space of rank n over
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the field of constants M(Eq). As a matter of fact, contrary to the case of differential

equations, a fundamental solution in A = M(C∗) always exists: one does not have

to rely on multivalued functions (but, see remark 0.1 below).

Birkhoff considered systems (0.0.7) for K = C(z). These should be classified with

respect to rational equivalence:

(0.0.8) B ∼ A ⇐⇒ B = F [A] =
def

(σqF )AF−1 for an F ∈ GLn(C(z)).

Note that the gauge transformation X 7→ Y = FX changes solutions of the system

σqX = AX into solutions of the system σqY = BY . By the way, Birkhoff proved

that any such system is equivalent to the system obtained through (0.0.6) from some

equation (0.0.5), a result known today as the cyclic vector lemma.

To begin with, the matrix F has coefficients in the field K = C(z) (global classifi-

cation); but intermediate results involve local classification, for which we allow local

gauge transforms F ∈ GLn(C({z})) or F ∈ GLn(C((z))). In this setting, the only

possible local information seems to be located at 0 and ∞, since they are the only

points fixed by the automorphism z 7→ qz. Birkhoff (relying on previous results by

Adams and Carmichael) then defined what it means for a system to be singular reg-

ular at these points and built multivalued local solutions at 0 and ∞. The a priori

local solutions X (0) and X (∞) thus obtained are actually meromorphic all over C∗,

because the functional equation σqX = AX (A rational) expands any given disk of

convergence by the factor |q| > 1.

Then, solutions X (0) and X (∞) being given, he defines their connection matrix P

through the relation: X (0) = X (∞)P . Since X (0) and X (∞) are fundamental solutions

of the same q-difference system, the matrix P is q-invariant, thus elliptic: it can

therefore be encoded by finitely many numerical invariants. These, of course, should

be joined with the local invariants at 0 and ∞ (the exponents).

In order to compare the class of q-difference systems (up to rational equivalence)

to the class of such sets of invariants (up to natural symetries), Birkhoff counted the

number of free parameters on both sides and found them equal. Then, he formulated

the inverse problem in the generic case (the local matrices A(0) and A(∞) are semi-

simple): does every such family of numerical invariants come from a regular singular

system ? He solved this “generalized Riemann problem” affirmatively. Here, the

main tool was the “preliminary theorem”, better known as “Birkhoff factorization of

matrices”. Nowadays, it is rather formulated as the Birkhoff-Grothendieck theorem

about the classification of holomorphic vector bundles over the Riemann sphere (see

[5] or [25]), making it quite clear that it has a topological meaning. Besides, this

theorem was used in this form by Röhrl in [31] to solve the Riemann-Hilbert problem

for differential equations (see also [32]).
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