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THE ELLIPTIC REPRESENTATION OF THE SIXTH
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Davide Guzzetti

Abstract. — We find a class of solutions of the sixth Painlevé equation corresponding
to almost all the monodromy data of the associated linear system; actually, all data
but one point in the space of data. We describe the critical behavior close to the
critical points by means of the elliptic representation, and we find the relation among
the parameters at the different critical points (connection problem).

Résumé(Représentation elliptique de l’équation de Painlevé VI).— Nous exhibons une
classe de solutions de l’équation de Painlevé VI prenant en compte presque toutes les
données de monodromie du système linéaire associé ; en fait, toutes les données sauf
un point de l’espace des données de monodromie.

Nous décrivons le comportement critique au voisinage de chaque point critique
au moyen de la représentation elliptique. Nous explicitons les relations liant les para-
mètres aux différents points critiques (problème de connexion).

1. Introduction

In this paper, I review some results [6, 7] on the elliptic representation of the general

Painlevé 6 equation (PVI in the following). I would like to explain the motivations

which brought me to study the elliptic representation, and the problems which such

an approach has solved.
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c© Séminaires et Congrès 14, SMF 2006



84 D. GUZZETTI

The sixth Painlevé equation is

(PVI)
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The generic solution has essential singularities and/or branch points in 0,1,∞. These

points will be called critical. The other singularities, which depend on the initial con-

ditions, are poles. The behavior of a solution close to a critical point is called critical

behavior. A solution of PVI can be analytically continued to a meromorphic func-

tion on the universal covering of P1\{0, 1,∞}. For generic values of the integration

constants and of the parameters α,β,γ,δ, it can not be expressed via elementary or

classical transcendental functions. For this reason, it is called a Painlevé transcendent.

The first analytical problem with Painlevé equations is to determine the critical

behavior of the transcendents at the critical points. Such a behavior must depend

on two parameters (integration constants). The second problem, called connection

problem, is to find the relation between the couples of parameters at different critical

points.

2. Previous Results

The work of Jimbo [9] is the fundamental paper on the subject. For generic values

of α, β, γ δ, PVI admits a 2-parameter class of solutions, with the following critical

behavior: .

(1) y(x) = a(0)x1−σ(0)

(1 + O(|x|ε)), x → 0,

(2) y(x) = 1 − a(1)(1 − x)1−σ(1)

(1 + O(|1 − x|ε)), x → 1,

(3) y(x) = a(∞)xσ(∞)

(1 + O(|x|−ε)), x → ∞,

where ε is a small positive number, a(i) and σ(i) are complex numbers such that

a(i) 6= 0 and

(4) 0 ≤ <σ(i) < 1.

We remark that x converges to the critical points inside a sector with vertex on

the corresponding critical point. The connection problem is to finding the relation

among the three pairs (σ(i), a(i)), i = 0, 1,∞. In [9] the problem is solved by the

isomonodromy deformations theory. Actually, PVI is the isomonodromy deformation

equation of a Fuchsian system of differential equations [12, 10, 11]

dY

dz
= A(z; x)Y, A(z; x) :=

[
A0(x)

z
+

Ax(x)

z − x
+

A1(x)

z − 1

]
.
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The 2 × 2 matrices Ai(x) (i = 0, x, 1 are labels) depend on x in such a way that the

monodromy of a fundamental solution Y (z, x) does not change for small deformations

of x. They also depend on the parameters α, β, γ, δ of PVI. Here, we use the same

notations of the paper [9]: namely, A0(x) + A1(x) + Ax(x) = − 1
2diag(θ∞,−θ∞); the

eigenvalues of Ai(x) are ± 1
2θi, i = 0, 1, x, and

(5) α =
1

2
(θ∞ − 1)2, −β =

1

2
θ2
0 , γ =

1

2
θ2
1,

(
1

2
− δ

)
=

1

2
θ2

x.

The equations of monodromy-preserving deformation (Schlesinger equations), can be

written in Hamiltonian form [15] and reduce to PVI, being the transcendent y(x)

solution of A(y(x); x)1,2 = 0.

Let M0, M1, Mx be the monodromy matrices at z = 0, 1, x, for a given basis in the

fundamental group of P1\{0, 1, x,∞}.There is a one to one correspondence(1) between

a given choice of monodromy data θ0, θx, θ1, θ∞, tr(M0Mx), tr(M0M1), tr(M1Mx)

and a transcendent y(x) (see [9, 2, 6]) . Namely:

(6) y(x) = y
(
x; θ0, θx, θ1, θ∞, tr(M0Mx), tr(M0M1), tr(M1Mx)

)
.

We remark that θ0, θx, θ1, θ∞ specify the equation. Only two of tr(M0Mx), tr(M0M1),

tr(M1Mx) are independent, because, for a given choice of the basis of loops in

P1\{0, 1, x,∞}, we have M∞ = M1MxM0. This implies

cos(πθ0)tr(M1Mx) + cos(πθ1)tr(M0Mx) + cos(πθx)tr(M1M0)

= 2 cos(πθ∞) + 4 cos(πθ1) cos(πθ0) cos(πθx).

A transcendent in the class (1) (2) (3) above, coincides with a transcendent (6),

for:

2 cos(πσ(0)) = tr(M0Mx),

2 cos(πσ(1)) = tr(M1Mx),(7)

2 cos(πσ(∞)) = tr(M0M1)

and

(8) a(i) = a(i)
(
σ(i); θ0, θx, θ1, θ∞, tr(M0Mx), tr(M0M1), tr(M1Mx)

)
, i = 0, 1,∞.

Formula (8) for a(0), can be derived from (1.8), (1.10) and (2.15) of [9](2). It can be

derived also from (A.6), (A.28), (A.29) of [7] (note that in [7] I miss-printed (A.30),

(1)If θ0, θx, θ1, θ∞ 6∈ Z.
(2)The connection problem is solved in [9] for generic values of α, β, γ, δ . More precisely, by generic

case we mean:

(9) θ0, θx, θ1, θ∞ 6∈ Z;
±σ(i) ± θ1 ± θ∞

2
,
±σ(i) ± θ0 ± θx

2
6∈ Z.

The signs ± vary independently. This is a technical condition which can be abandoned. For example,

the non-generic case β = γ = 1 − 2δ = 0 and α any complex number was analyzed in [2], for its

relevant applications to Frobenius manifolds. Its elliptic representation is discussed in [6].
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which can be anyway corrected using (A.28), (A.29). Also in formula (1.8) of [9] there

is a miss-print, I think: the last sign is ± and not ∓.).

(10)

a(0) =
1

4

[(θx + σ(0))2 − θ2
0 ][θ∞ + θ1 + σ(0)]

σ(0)2[θ∞ + θ1 − σ(0)]

×
Γ(1 + σ(0))2Γ

(
1
2 (θ0 + θx − σ(0)) + 1

)
Γ

(
1
2 (θx − θ0 − σ(0)) + 1

)

Γ(1 − σ(0))2Γ
(

1
2 (θ0 + θx + σ(0)) + 1

)
Γ

(
1
2 (θx − θ0 + σ(0)) + 1

)

×
Γ

(
1
2 (θ∞ + θ1 − σ(0)) + 1

)
Γ

(
1
2 (θ1 − θ∞ − σ(0)) + 1

)

Γ
(

1
2 (θ∞ + θ1 + σ(0)) + 1

)
Γ

(
1
2 (θ1 − θ∞ + σ(0)) + 1

) ×
V

U

U :=

[
i

2
sin(πσ(0))tr(M1Mx) − cos(πθx) cos(πθ∞) − cos(πθ0) cos(πθ1)

]
eiπσ(0)

+
i

2
sin(πσ(0))tr(M0M1) + cos(πθx) cos(πθ1) + cos(πθ∞) cos(πθ0)

V := 4 sin
π

2
(θ0 + θx − σ(0)) sin

π

2
(θ0 − θx + σ(0))

× sin
π

2
(θ∞ + θ1 − σ(0))) sin

π

2
(θ∞ − θ1 + σ(0)).

The formulas of a(1), a(∞), are given in Remark 2 below. The monodromy data are

restricted by the following condition, equivalent to (4):

(11) tr(MiMj) 6∈ (−∞,−2], j = 0, 1, x.

I take the occasion to say that in [7] the condition (1.30) is wrong, the right one being

(11).

Remark 1. — PVI depends holomorphically on θ0, θ1, θx, θ∞; and so does y(x).

On the other hand, the matrices of the Fuchsian system have a pole in θ∞ = 0. This

is a non-generic case, which must be treated separately. The non-generic cases have

been studied, for the equation with θ0 = θx = θ1 = 0 and arbitrary θ∞. The reader is

referred to [14, 2, 6]. Also in these cases, y(x) is shown to depend holomorphically

on θ∞
(3).

We also remark that formula (10) is to be modified when σ(0) = 0. We refer to [9].

(3)From the technical point of view, one has to solve a Riemann-Hilbert problem, to construct the

fuchsian system associated to PVI from the given set of monodromy data. If θ∞ is not integer, the

monodromy at infinity is similar to the matrix diag(e−iπθ∞ , eiπθ∞ ). But if the condition θ∞ ∈ Z is

broken, the monodromy contains non diagonal terms. The solution of the problem is possible case

by case, and it is reduced to a connection problem for hyper-geometric equations with logarithmic

solutions and non-generic monodromy.
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Remark 2. — To describe the symmetries of PVI, it may be convenient to choose

(12) α =
1

2
θ2
∞.

PVI is invariant for the change of variables y(x) = 1− ỹ(t), x = 1−t and simultaneous

permutation of θ0, θ1. This means that y(x) solves PVI if and only if ỹ(t) solves PVI

with permuted parameters and independent variable t. Similarly, PVI is invariant for

y(x) = 1/ỹ(t), x = 1/t and simultaneous permutation of θ∞, θ0. It is invariant for

y(x) = (ỹ(t) − t)/(1 − t), x = t/(t − 1) and simultaneous permutation of θ0, θx. By

composing the third, first and again third symmetries, we get y(x) = ỹ(t)/t, t = 1/x

with the permutation of θ1, θx. Therefore, the critical points 0, 1,∞ are equivalent.

This means that it is enough to know (8) for a(0), to write the analogous for a(1)

and a(∞). Explicitly, to compute a(1) one has to do the following substitution in the

formula of a(0):

σ 7→ σ(1)

θ0 7→ θ1, θ1 7→ θ0(13)

tr(M0Mx) 7→ tr(M1Mx), tr(M1Mx) 7→ tr(M0Mx),(14)

(15) tr(M0M1) 7→ 4 [cos(πθ0) cos(πθ1) + cos(πθ∞) cos(πθx)] +

− (tr(M0M1) + tr(M0Mx)tr(M1Mx))

to compute a(∞) one has to do the following substitution in the formula of a(0):

σ 7→ σ(∞)

θx 7→ θ1, θ1 7→ θx(16)

tr(M0Mx) 7→ tr(M0M1),(17)

(18) tr(M0M1) 7→ 4
[
cos(πθx) cos(πθ0) + cos(πθ∞) cos(πθ1)

]
+

− (tr(M0Mx) + tr(M1Mx)tr(M0M1)).

In the above formula we used the definition (5) for θ∞.

3. Two Questions

Problem 1. — Let PVI be given; namely, let θ0, θ1, θx, θ∞ be given. We would

like to study all the solutions of the given PVI. As a consequence of the one-to-one

correspondence (6) between monodromy data and transcendents, we need to compute

the critical behavior and solve the connection problem for all values tr(MiMj), j =

0, 1, x(4).

This problem was for me the first motivation to study the elliptic representation.

(4)In exceptional cases (θ0, θx, θ1, θ∞ ∈ Z) the one-to-one correspondence is broken. They can be

treated separately. See for example [14].
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