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STABILITY OF QUANTUM HARMONIC OSCILLATOR

UNDER TIME QUASI-PERIODIC PERTURBATION

by

Wei-Min Wang

Abstract. — We prove stability of the bound states for the quantum harmonic os-

cillator under non-resonant, time quasi-periodic perturbations by proving that the

associated Floquet Hamiltonian has pure point spectrum.

Résumé (Stabilité de l’oscillateur harmonique quantique sous lesperturbations quasi-
périodiques)

Nous démontrons la stabilité des états bornés de l’oscillateur harmonique sous les

perturbations non-résonantes, quasi-périodiques en temps en démontrant que l’ha-

miltonien Floquet associé a un spectre purement ponctuel.

The stability of the quantum harmonic oscillator is a long standing problem since

the establishment of quantum mechanics. The Schrödinger equation for the harmonic

oscillator in R
n (in appropriate coordinates) is the following:

(1) −i ∂
∂t
ψ =

1

2

n
∑

i=1

(− ∂2

∂x2
i

+ x2
i )ψ,

where we assume

(2) ψ ∈ C1(R, L2(Rn))

for the moment. We start from the 1 dimensional case, n = 1. (1) then reduces to

(3) −i ∂
∂t
ψ =

1

2
(− ∂2

∂x2
+ x2)ψ.

The Schrödinger operator

(4) H =
1

2
(− d2

dx2
+ x2)
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is the 1-d harmonic oscillator. Since H is independent of t, it is amenable to a spectral

analysis. It is well known that H has pure point spectrum with eigenvalues

(5) λn = 2n+ 1, n = 0, 1...,

and eigenfunctions (the Hermite functions)

(6) hn(x) =
Hn(x)√

2nn!
e−x2/2, n = 0, 1...

where Hn(x) is the nth Hermite polynomial, relative to the weight e−x2

(H0(x) = 1)

and

(7)

∫ ∞

−∞
e−x2

Hm(x)Hn(x)dx =
√
πδmn

Using (5-7), the normalized L2 solutions to (1) are all of the form

(8) ψ(x, t) =

∞
∑

n=0

anhn(x)ei λn
2 t (

∑

|an|2 = 1),

corresponding to the initial condition

(9) ψ(x, 0) =

∞
∑

n=0

anhn(x) (
∑

|an|2 = 1).

The functions in (8) are almost-periodic (in fact periodic here) in time with frequencies

λn/4π, n = 0, 1...

Equation (3) generates a unitary propagator U(t, s) = U(t− s, 0) on L2(R). Since

the spectrum of H is pure point, ∀u ∈ L2(R), ∀ε, ∃R, such that

(10) inf
t
‖U(t, 0)u‖L2(|x|≤R) ≥ (1 − ε)‖u‖

by using eigenfunction (Hermite function) expansions. The harmonic oscillator (4)

is an integrable system. The above results are classical. It is natural to ask how

much of the above picture remains under perturbation, when the system is no longer

integrable. In this paper, we investigate stability of the 1-d harmonic oscillator under

time quasi-periodic, spatially localized perturbations. To simplify the exposition, we

study the following “model” equation:

(11) −i ∂
∂t
ψ =

1

2
(− ∂2

∂x2
+ x2)ψ + δ|h0(x)|2

ν
∑

k=1

cos(ωkt+ φk)ψ,

on C1(R, L2(R)), where

(12) 0 < δ � 1, ω = {ωk}ν
k=1 ∈ [0, 2π)ν, φ = {φk}ν

k=1 ∈ [0, 2π)ν , h0(x) = e−x2/2.

In particular, we shall study the validity of (10) for solutions to (11), when U is the

propagator for (11). The method used here can be generalized to treat the equation

(13) −i ∂
∂t
ψ =

1

2
(− ∂2

∂x2
+ x2)ψ + δV (t, x),

where V is C∞
0 in x and analytic, quasi-periodic in t.
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The perturbation term, O(δ) term in (11) is motivated by the nonlinear equation:

(14) −i ∂
∂t
ψ =

1

2
(− ∂2

∂x2
+ x2)ψ +Mψ + δ|ψ|2ψ (0 < δ � 1),

where M is a Hermite multiplier, i.e., in the Hermite function basis,

M = diag (Mn), Mn ∈ R,(15)

Mu =

∞
∑

n=0

Mn(hn, u)hn, for all u ∈ L2(R).(16)

Specifically, (11) is motivated by the construction of time quasi-periodic solutions to

(14) for appropriate initial conditions such as

(17) ψ(x, 0) =

ν
∑

i=1

cki
hki

(x).

In (11), for computational simplicity, we take the spatial dependence to be |h0(x)|2
as it already captures the essence of the perturbation in view of (14, 17, 6). The

various computations and the Theorem extend immediately to more general finite

combinations of hk(x).

The Floquet Hamiltonian and formulation of stability. — It follows from [32, 33]

that (11) generates a unique unitary propagator U(t, s), t, s ∈ R on L2(R), so that

for every s ∈ R and

(18) u0 ∈ H2 = {f ∈ L2(R)|‖f‖2
H2 =

∑

|α+β|≤2

‖xα∂β
xf‖2

L2 <∞},

(19) u(·) = U(·, s)u0 ∈ C1(R, L2(R)) ∩ C0(R, H2)

is a unique solution of (11) in L2(R) satisfying u(s) = u0.

When ν = 1, (11) is time periodic with period T = 2π/ω. The 1-period propagator

U(T + s, s) is called the Floquet operator. The long time behavior of the solutions to

(11) can be characterized by means of the spectral properties of U(T + s, s) [14, 21,

34]. Furthermore the nature of the spectrum of U is the same (apart from multiplicity)

as that of the Floquet Hamiltonian K [31]:

(20) K = iω
∂

∂φ
+

1

2
(− ∂2

∂x2
+ x2)ψ + δ|h0(x)|2 cosφ

on L2(R) ⊗ L2(T), where L2(T) is L2[0, 2π) with periodic boundary conditions.

Decompose L2(R) into the pure point Hpp and continuous Hc spectral subspaces

of the Floquet operator U(T + s, s):

(21) L2(R) = Hpp ⊕ Hc.

We have the following equivalence relations [14, 34]: u ∈ Hpp(U (T + s , s)) if and

only if ∀ε > 0, ∃R > 0, such that

(22) inft‖U(t, s)u‖L2(|x|≤R) ≥ (1 − ε)‖u‖;
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and u ∈ Hc(U (T + s , s)) if and only if ∀R > 0,

(23) limt→±∞
1

t

∫ t

0

dt′‖U(t′, s)u‖2
L2(|x|≤R) = 0.

(Needless to say, the above statements hold for general time periodic Schrödinger

equations.)

When ν ≥ 2, (10) is time quasi-periodic. The above constructions extend for small

δ, cf. [1, 12, 22] leading to the Floquet Hamiltonian K:

(24) K = i

ν
∑

k=1

ωk
∂

∂φk
+

1

2
(− ∂2

∂x2
+ x2)ψ + δ|h0(x)|2

ν
∑

k=1

cosφk

on L2(R)⊗L2(Tν), cf. [7]. This is related to the so called reducibility of skew product

flows in dynamical systems, cf. [12]. We note that the Hermite-Fourier functions:

(25) e−in·φhj(x), n ∈ Z
ν , φ ∈ T

ν , j ∈ {0, 1...}
provide a basis for L2(R) ⊗ L2(Tν).

We say that the harmonic oscillator H is stable if K has pure point spectrum.

Let s ∈ R. This implies (by expansion using eigenfunctions of K) that given any

u ∈ L2(R), ∀ε > 0, ∃R > 0, such that

(26) inft‖U(t, s)u‖L2(|x|≤R) ≥ (1 − ε)‖u‖, a.e.φ,

cf. [7, 22]. So (10) remains valid and we have dynamical stability. We now state the

main results pertaining to (11).

Theorem. — There exists δ0 > 0, such that for all 0 < δ < δ0, there exists Ω ⊂
[0, 2π)ν of positive measure, asymptotically full measure:

(27) mes Ω → (2π)ν as δ → 0,

such that for all ω ∈ Ω, the Floquet Hamiltonian K defined in (24) has pure point spec-

trum: σ(K) = σpp. Moreover the Fourier-Hermite coefficients of the eigenfunctions

of K have subexponential decay.

As an immediate consequence, we have

Corollary. — Assume that Ω is as in the Theorem. Let s ∈ R. For all ω ∈ Ω, all

u ∈ L2(R), all ε > 0, there exists R > 0, such that

(28) inft‖U(t, s, φ)u‖L2(|x|≤R) ≥ (1 − ε)‖u‖, a.e.φ,
where U is the unitary propagator for (11).

We note that this good set Ω of ω is a subset of Diophantine frequencies. This

is typical for KAM type of persistence theorem. Stability under time quasi-periodic

perturbations as in (11) is, generally speaking a precursor for stability under nonlinear

perturbation as in (14) (cf. [7, 6]), where M plays the role of ω and varies the

tangential frequencies. The above Theorem resolves the Enss-Veselic conjecture dated

from their 1983 paper [14] in a general quasi-periodic setting.
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A sketch of the proof of the Theorem. — Instead of working withK defined on L2(R)⊗
L2(Tν) directly, it is more convenient to work with its unitary equivalentH on `2(Zν×
{0, 1...}), using the Hermite-Fourier basis in (25). We have

(29) H = diag (n · ω + j +
1

2
) +

δ

2
W ⊗ ∆

on `2(Zν × {0, 1...}), where W acts on the j indices, j = 0, 1, 2...,

(30) Wjj′ ∼
1√
j + j′

e
− (j−j′)2

2(j+j′) for j + j′ � 1;

∆ acts on the n indices, n ∈ Z
ν ,

(31) ∆nn′ = 1, |n− n′|`1 = 1, ∆nn′ = 0, otherwise.

The computation of W involves integrals of products of Hermite functions. We

will explain shortly this computation, which is independent from the main thread of

construction.

The principal new feature here is that W is long range. The jth row has width

O(
√

j ) about the diagonal element Wjj . It is not and cannot be approximated by a

convolution matrix. The potential x2 breaks translational invariance. The annihila-

tion and creation operators of the harmonic oscillator a = 1√
2
( d

dx +x), a∗ = 1√
2
(− d

dx +

x), satisfying [a, a∗] = 1, are generators of the Heisenberg group. So (19) presents a

new class of problems distinct from that considered in [2, 3, 4, 7, 6, 13, 24, 26].

The proof of pure point spectrum of H is via proving pointwise decay of the finite

volume Green’s functions: (HΛ−E)−1, where Λ are finite subsets of Z
ν ×{0, 1...} and

Λ ↗ Z
ν ×{0, 1...}. We need decay of the Green’s functions at all scales, as assuming

E an eigenvalue, a priori we do not have information on the center and support of its

eigenfunction ψ. The regions Λ where (HΛ − E)−1 has pointwise decay is precisely

where we establish later that ψ is small there.

For the initial scales, the estimates on GΛ(E) = (HΛ−E)−1 are obtained by direct

perturbation theory in δ for 0 < δ � 1. For subsequent scales, the proof is a multiscale

induction process using the resolvent equation. Assume we have estimates on GΛ′ for

cubes Λ′ at scale L′. Assume Λ is a cube at a larger scale L, L� L′. Intuitively, if we

could establish that for most of Λ′ ⊂ Λ, GΛ′(E) has pointwise decay, then assuming

we have some a priori estimates on GΛ(E), we should be able to prove that GΛ(E)

also has pointwise decay.

There are “two” directions in the problem, the higher harmonics direction n and

the spatial direction j. The off-diagonal part of H is Toeplitz in the n direction,

corresponding to the discrete Laplacian ∆. Since the frequency ω is in general a

vector (if ν ≥ 2), n · ω does not necessarily → ∞ as |n| → ∞. So the n direction is

non-perturbative. We use estimates on GΛ′ and semi-algebraic techniques as in [5, 7]

to control the number of resonant Λ′, where GΛ′ is large, in Λ.
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