DISCRETIZATION OF POSITIVE HARMONIC FUNCTIONS ON RIEMANNIAN MANIFOLDS AND MARTIN BOUNDARY

Werner BALLMANN

François LEDRAPPIER

Mathematisches Institut der Universität Bonn Beringstr. 1 D-53115 Bonn (Germany) École Polytechnique Centre de Mathématique F-91128 Palaiseau Cedex (France)

Abstract. Let X be a separated subset in a connected Riemannian manifold M with bounded geometry such that the ε -neighbourhood of X is recurrent w.r.t. Brownian motion on M for some $\varepsilon > 0$. The main result of this paper says that the data in the discretization procedure of Lyons and Sullivan can be chosen such that the Green function of M and the resulting Markov chain on X coincide up to a constant on pairs (y, z), where $y \neq z$ are points in X.

Résumé. Soit X un sous-ensemble séparé d'une variété riemannienne M à géométrie bornée tel que le voisinage d'épaisseur ε de X est récurrent pour le mouvement brownien sur M pour au moins un ε positif. Le principal résultat de cet article dit que les données du procédé des discrétisations de Lyons et Sullivan peuvent être choisies de telle sorte que la fonction de Green de M et la chaîne de Markov sur X qui s'en déduit coïncident à une constante près sur les paires de points (y, z) avec $y \neq z$.

M.S.C. Subject Classification Index (1991) : 53C20, 31C12, 60J50.

© Séminaires & Congrès 1, SMF 1996

Acknowledgements. The second author was supported by SFB 256 (Bonn) and CNRS (Paris). The first author was partly supported by the EC-program GADGET.

TABLE OF CONTENTS

INTRODUCTION	79
1. HARMONIC FUNCTIONS	81
2. MARTIN BOUNDARIES	85
3. EXAMPLES	89
BIBLIOGRAPHY	92

INTRODUCTION

We are interested in the connection between potential theory of the Laplacian on Riemannian manifolds and the potential theory of Markov chains on discrete subsets. Such a connection has been established by Furstenberg [F] in the case of discrete subgroups of $Sl(2,\mathbb{R})$. We investigate the discretization procedure of Lyons and Sullivan [LS], which associates to a so-called *-*recurrent* (respectively *cocompact*) discrete subset X of a connected Riemannian manifold M a family of probability measures μ_y , $y \in M$, on X such that

$$H(y) = \mu_y(H) := \sum_{x \in X} H(x)\mu_y(x)$$

for any bounded (respectively positive) harmonic function H on M. In particular, the restriction of H to X is a μ -harmonic function with respect to the Markov chain on X defined by the measures μ_x , $x \in X$ (that is, $\mu_x(H) = H(x)$ for all $x \in X$). Under some extra assumptions on the data involved in the construction, one obtains in this way all bounded (respectively positive) μ -harmonic functions on X (see [A], [K]) and, if X is cocompact, that Brownian motion on M is transient iff the Markov chain on X is transient [LS].

A more precise information about behaviour at infinity of harmonic functions is given by the Martin compactification $cl_{\Delta}M$ and the Martin boundary $\partial_{\Delta}M$ of M. By definition, $cl_{\Delta}M = M \dot{\cup} \partial_{\Delta}M$ is the closure of M in the space of positive superharmonic functions via the embedding $y \longmapsto K(., y)$, where

$$K(., y) = G(., y)/G(x_0, y)$$

is the Martin kernel, G is the Green function of M and $x_0 \in M$ is a chosen origin. For convenience, we choose $x_0 \in X$. The Martin compactification $cl_{\mu}X$ and Martin boundary $\partial_{\mu}X$ of X with respect to a Markov chain on X are defined in the same way by using the Martin kernel k and the Green function g of the Markov chain. The definition of the Martin boundary requires that Brownian motion on M (respectively the Markov chain on X) has a Green function, i.e., that it is transient. As a consequence of Theorems 1.11, 2.7, 2.8, 3.1 and Corollary 2.9 below we obtain the theorem

Main theorem. — Assume that the geometry of M is bounded and that X is a discrete subset of M such that, for some $\varepsilon > 0$,

(i) $dist(x, z) \ge 2\varepsilon$ for all $x \ne z$ in X; (ii) $B_{\varepsilon}(X)$ is recurrent.

Then, for some appropriate choice of data, the measures $\mu_y, y \in M$, of Lyons and Sullivan satisfy

(a) for some positive constant κ we have $g(x, z) = \kappa G(x, z)$ for all $x \neq z$ in X. In particular, the Markov chain on X is transient iff Brownian motion on M is.

If Brownian motion on M is transient, then $\mu_x(z) = \mu_z(x)$ for all x, z in X and

- (b) the inclusion $X \subset M$ extends to a homeomorphism of $cl_{\mu}X$ and \overline{X} , where \overline{X} is the closure of X in $cl_{\Delta}M$;
- (c) restriction defines an isomorphism between the simplex of positive harmonic functions on M spanned by $\overline{X} \cap \partial_{\Delta} M$ and the space of positive μ -harmonic functions on X which are 1 at x_0 .

The Harnack inequality implies that $\overline{X} \cap \partial_{\Delta} M$ contains all extremal positive harmonic functions of M which are 1 at x_0 if X is a net, that is, if $B_R(X) = M$ for some R > 0. Thus (c) implies in this case that the space of positive harmonic functions on M and the space of positive μ -harmonic functions on X are isomorphic, a result due to Ancona [A].

If Γ is a discrete group of isometries of M and X is the orbit of a point x_0 on which Γ acts freely, then X satisfies (i). Property (ii) holds if $vol(M/\Gamma) < \infty$ or , more generally, if the Brownian motion on M/Γ is recurrent. If this is the case, then the Markov chain on X corresponds to a (left-invariant) symmetric random walk on Γ (via the natural identification of Γ and $X = \Gamma(x_0)$).

Corollary. — There exists a symmetric random walk on the free group F_q with $q \ge 2$ generators with Martin boundary equal to a circle.

As for the proof, recall that the Martin boundary of the hyperbolic plane H^2 is the circle (at infinity) and that F_q acts as a discrete group of isometries on H^2 with $vol(H^2/F_q) < \infty$. It follows from Theorem 3.2 below that the measure defining the random walk on F_q has finite logarithmic moment with respect to the word norm on F_q and finite entropy. This has to be contrasted with the case of probabilities on F_q with finite support, for which the Martin boundary is known to be a Cantor set [D].

We would like to thank Martine Babillot to whom we owe the assertion and the proof of the symmetry of the measures μ_x in the above theorem. The second author gratefully acknowledges the support by the SFB 256 at the University of Bonn.

1. HARMONIC FUNCTIONS

Let M denote a connected Riemannian manifold. A Brownian path on M is a continuous curve

$$\omega : [0, \zeta(\omega)) \to M$$
, where $\zeta(\omega) \in (0, \infty]$.

For x in M, let P_x denote the measure on the space of Brownian paths on M with $\omega(0) = x$ defining the Brownian motion on M starting from x. For a Borel measure λ on M let P_{λ} be defined by $P_{\lambda} = \int P_x \lambda(dx)$. The measure P_{λ} describes the Brownian motion on M with initial distribution λ .

For a closed subset F of M and a Brownian path ω set

$$R^F(\omega) = \inf\{t \ge 0 \mid \omega(t) \in F\} .$$

The balayage $\beta_{\lambda}^{F} = \beta(\lambda, F)$ of a measure λ onto F is the distribution of P_{λ} at the time R^{F} , i.e., for A a Borel subset of M,

$$\beta_{\lambda}^{F}(A) = P_{\lambda} \{ \omega \mid R^{F}(\omega) < \zeta(\omega) \text{ and } \omega(R^{F}(\omega)) \in A \} .$$

For short we set $\beta_x^F = \beta(x, F) = \beta(\delta_x, F)$; then $\beta(\lambda, F) = \int \beta(x, F)\lambda(dx)$. For x in F, we have $\beta(x, F) = \delta_x$. We say that F is *recurrent* if $\beta_x^F(F) = 1$ for all x in M.

For an open subset V of M and a Brownian path ω set

$$S^V(\omega) = \inf\{t \ge 0 \mid \omega(t) \in M \backslash V\} \ .$$

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1996