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Abstract. Let X be a separated subset in a connected Riemannian manifold M with

bounded geometry such that the ε-neighbourhood of X is recurrent w.r.t. Brownian motion

onM for some ε > 0. The main result of this paper says that the data in the discretization
procedure of Lyons and Sullivan can be chosen such that the Green function of M and the

resulting Markov chain on X coincide up to a constant on pairs (y, z), where y �= z are
points in X .

Résumé. Soit X un sous-ensemble séparé d’une variété riemannienne M à géométrie

bornée tel que le voisinage d’épaisseur ε de X est récurrent pour le mouvement brownien

sur M pour au moins un ε positif. Le principal résultat de cet article dit que les données
du procédé des discrétisations de Lyons et Sullivan peuvent être choisies de telle sorte que

la fonction de Green de M et la châıne de Markov sur X qui s’en déduit cöıncident à une

constante près sur les paires de points (y, z) avec y �= z.
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INTRODUCTION

We are interested in the connection between potential theory of the Laplacian on

Riemannian manifolds and the potential theory of Markov chains on discrete subsets.

Such a connection has been established by Furstenberg [F] in the case of discrete

subgroups of Sl(2, IR) . We investigate the discretization procedure of Lyons and

Sullivan [LS], which associates to a so-called ∗-recurrent (respectively cocompact)

discrete subset X of a connected Riemannian manifold M a family of probability

measures µy, y ∈ M , on X such that

H(y) = µy(H) :=
∑
x∈X

H(x)µy(x)

for any bounded (respectively positive) harmonic function H on M . In particular,

the restriction of H to X is a µ-harmonic function with respect to the Markov chain

on X defined by the measures µx, x ∈ X (that is, µx(H) = H(x) for all x ∈ X).

Under some extra assumptions on the data involved in the construction, one obtains

in this way all bounded (respectively positive) µ-harmonic functions on X (see [A],

[K]) and, if X is cocompact, that Brownian motion on M is transient iff the Markov

chain on X is transient [LS].

A more precise information about behaviour at infinity of harmonic functions

is given by the Martin compactification cl∆M and the Martin boundary ∂∆M of

M . By definition, cl∆M = M ∪̇∂∆M is the closure of M in the space of positive

superharmonic functions via the embedding y �−→ K(., y), where

K(., y) = G(., y)/G(x0, y)

is the Martin kernel, G is the Green function of M and x0 ∈ M is a chosen origin.

For convenience, we choose x0 ∈ X . The Martin compactification clµX and Martin

boundary ∂µX of X with respect to a Markov chain on X are defined in the same

way by using the Martin kernel k and the Green function g of the Markov chain. The

definition of the Martin boundary requires that Brownian motion on M (respectively

the Markov chain on X) has a Green function, i.e., that it is transient.
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As a consequence of Theorems 1.11, 2.7, 2.8, 3.1 and Corollary 2.9 below we

obtain the theorem

Main theorem. — Assume that the geometry of M is bounded and that X is a

discrete subset of M such that, for some ε > 0,

(i) dist(x, z) ≥ 2ε for all x �= z in X ; (ii) Bε(X) is recurrent.

Then, for some appropriate choice of data, the measures µy, y ∈ M , of Lyons and

Sullivan satisfy

(a) for some positive constant κ we have g(x, z) = κG(x, z) for all x �= z in X . In

particular, the Markov chain on X is transient iff Brownian motion on M is.

If Brownian motion on M is transient, then µx(z) = µz(x) for all x, z in X and

(b) the inclusion X ⊂ M extends to a homeomorphism of clµX and X , where X

is the closure of X in cl∆M ;

(c) restriction defines an isomorphism between the simplex of positive harmonic

functions on M spanned by X ∩ ∂∆M and the space of positive µ-harmonic

functions on X which are 1 at x0.

The Harnack inequality implies that X ∩ ∂∆M contains all extremal positive

harmonic functions of M which are 1 at x0 if X is a net, that is, if BR(X) = M

for some R > 0. Thus (c) implies in this case that the space of positive harmonic

functions on M and the space of positive µ-harmonic functions on X are isomorphic,

a result due to Ancona [A].

If Γ is a discrete group of isometries of M and X is the orbit of a point x0 on

which Γ acts freely, then X satisfies (i). Property (ii) holds if vol(M/Γ) < ∞ or ,

more generally, if the Brownian motion on M/Γ is recurrent. If this is the case, then

the Markov chain on X corresponds to a (left-invariant) symmetric random walk on

Γ (via the natural identification of Γ and X = Γ(x0)).

Corollary. — There exists a symmetric random walk on the free group Fq with q ≥ 2
generators with Martin boundary equal to a circle.

As for the proof, recall that the Martin boundary of the hyperbolic plane H2 is

the circle (at infinity) and that Fq acts as a discrete group of isometries on H2 with

vol(H2/Fq) < ∞.
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It follows from Theorem 3.2 below that the measure defining the random walk

on Fq has finite logarithmic moment with respect to the word norm on Fq and finite

entropy. This has to be contrasted with the case of probabilities on Fq with finite

support, for which the Martin boundary is known to be a Cantor set [D].

We would like to thank Martine Babillot to whom we owe the assertion and the

proof of the symmetry of the measures µx in the above theorem. The second author

gratefully acknowledges the support by the SFB 256 at the University of Bonn.

1. HARMONIC FUNCTIONS

Let M denote a connected Riemannian manifold. A Brownian path on M is a

continuous curve

ω : [0, ζ(ω))→ M, where ζ(ω) ∈ (0,∞] .

For x in M , let Px denote the measure on the space of Brownian paths on M with

ω(0) = x defining the Brownian motion onM starting from x. For a Borel measure λ

on M let Pλ be defined by Pλ =
∫
Pxλ(dx). The measure Pλ describes the Brownian

motion on M with initial distribution λ.

For a closed subset F of M and a Brownian path ω set

RF (ω) = inf{t ≥ 0 ω(t) ∈ F} .

The balayage βF
λ = β(λ, F ) of a measure λ onto F is the distribution of Pλ at the

time RF , i.e., for A a Borel subset of M ,

βF
λ (A) = Pλ{ω RF (ω) < ζ(ω) and ω(RF (ω)) ∈ A} .

For short we set βF
x = β(x, F ) = β(δx, F ); then β(λ, F ) =

∫
β(x, F )λ(dx). For x in

F , we have β(x, F ) = δx. We say that F is recurrent if βF
x (F ) = 1 for all x in M .

For an open subset V of M and a Brownian path ω set

SV (ω) = inf{t ≥ 0 ω(t) ∈ M\V } .
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