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BERNSTEIN-GELFAND-GELFAND SEQUENCES
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Abstract — I discuss applications of Bernstein-Gelfand-Gelfand sequences in con-
formal differential geometry.

Résumé(Applications des suites de Bernstein-Gelfand-Gelfand courbées). —  J’étudie
des applications des suites de Bernstein-Gelfand-Gelfand en géométrie différentielle
conforme.

One of the themes of mathematics in the twentieth century has been the growing
realization that representation theory and geometry are closely related. There are
at least two aspects to this. Firstly, there is the geometric study of representation
theory that follows inevitably from the definition of a Lie group, where global methods
of geometry and topology are applied to homogeneous spaces. Secondly, there is the
increasing use of representation theory as a tool and language for the invariant analysis
of geometric structure—that is to say, the local (pointwise) aspects of differential
geometry. Although this second aspect also has a long history (the work of Cartan
stretches back into the nineteenth century), I think it is fair to say that only in
the last twenty years or so has representation theory really begun to gain ground
as an alternative to the hands-on approach of local coordinate computations. One
area which has motivated this shift is quaternionic geometry, the study of which only
intensified relatively recently in the history of differential geometry, driven by many
different forces, such as supersymmetry, the classification of metric holonomies, and
the geometry of moduli spaces. Confronted by an unfamiliar geometry, geometers
turned to the representation theory of H* - GL(n, H) and its subgroups (such as Sp(n)
and Sp(1) Sp(n)) as an efficient way to develop intuition.

2000 Mathematics Subject Classification— Primary 53A55; Secondary 53A30, 53C25.
Key words and phrases— Bernstein-Gelfand-Gelfand sequences, self-duality, Einstein metrics,
Einstein-Weyl geometry, conformally invariant operators.

(© Séminaires et Congres 4, SMF 2000



116 D.M.J. CALDERBANK

This paper concerns the role of representation theory in geometric structures, but,
in keeping with the theme of the conference (and the author’s interests), the emphasis
will be on conformal and Riemannian geometry, rather than quaternionic geometry.
The aim is demonstrate that even in these classical subjects, representation theoretic
methods not only provide an efficient language when computations become unman-
ageable, but also that they lead to genuinely new insights and constructions. Nowhere
has this been more true than in the study of invariant differential operators, and so I
will focus on an area where much progress has been made in recent years: Bernstein-
Gelfand-Gelfand sequences.

1. Parabolic geometries and the BGG sequences

A parabolic geometry is a geometry modelled on a generalized flag variety G/ P,
where G is a semisimple Lie group and P is a parabolic subgroup. These compact
homogeneous spaces arise naturally in representation theory as projectivized orbits
of highest weight vectors in irreducible representations. A parabolic subgroup P has
a decomposition P = L x N, where L is reductive and N is nilpotent—L is often
called the Levi factor. It is convenient to describe parabolic subgroups by crossing
nodes on the Dynkin diagram of G, so that if the crossed nodes (and adjoining lines)
are deleted, the result is the Dynkin diagram of (the semisimple part of) L. Such
diagrams will also denote the corresponding flag varieties. Strictly speaking, these
diagrams describe complex geometries, whereas real flag varieties should be denoted
by Satake diagrams with crosses. I shall ignore this distinction. Here are some
examples, together with names for the corresponding parabolic geometries (or rather,
for suitable real forms of these geometries).

Quaternionic  Even conformal Quaternionic CR
G semisimple Lie group e—e—e----e—o o—o—+—< oo ole

P parabolic subgroup o xeo - . oo P 4—{ L R

L Levi factor e o - -eoe o—4—< o o . .ole

The key example for this paper is G = SO(n+1,1), P = CO(n) x (R™)*, with G/P =
S™. This is the conformal sphere, identified as the “sky” in (n + 1,1)-dimensional
spacetime. The Dynkin diagram is shown above for n > 6 even. For n = 1-5,
the diagrams are X, X X, x3e, e—xe, 6 x—ere. The geometries for n = 1,2 are
projective and Mobius geometry respectively.

Geometries “modelled on” homogeneous spaces are most simply defined as Cartan
geometries, i.e., one views the homogeneous geometry on G/ P as a principal P-bundle
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G — G/ P equipped with the parallelism TG = G x g; then a curved analogue of this
is a principal P-bundle G — M equipped with a Cartan connection.

1.1. Definition — Let M be a manifold of the same dimension as G/P.

(i) A Cartan geometry of type (g, P) on M is a principal P-bundle 7: G — M,
together with a P-equivariant g-valued 1-form n: TG — g such that for each
u € G, n,: T,G — g is an isomorphism restricting to the canonical isomorphism
between T, (Gr(,)) and p.

(ii) The curvature K : A°TG — g of a Cartan geometry is defined by

KU, V) =dn(U,V)+ [n(U),n(V)].
It induces a curvature function x: G — A2g*® g via

k()€ x) = Ku(n™ (&), n " (X)) = &, x] — nuln™ (), n~ ()]

where u € G and the brackets are the Lie bracket in g and the Lie bracket of
vector fields on G.

Cartan geometries usually arise from a more familiar geometric structure on M by a
process of prolongation [10, 26]. In the case of conformal geometry this prolongation
procedure is the famous construction of the normal Cartan connection.

Associated to a P-module E is a vector bundle £ = G xp E. For example, the
Cartan connection 7 identifies the tangent bundle of M with G xp g/p. An important
special case of this is a G-module W, viewed as a P-module by restriction. In this
case, W = G xp, W = G X W, where C; = G Xp G. A Cartan connection on G
induces a principal bundle connection of G and hence a covariant derivative on W.
In various contexts, such linear representations of the Cartan connection have been
called “tractor” or “local twistor” connections [1, 2].

When the Cartan connection is flat (e.g., on the homogeneous model), parallel
sections of W can be identified, at least locally, with W, so we have

(1.1) 0->W— C*¥W) - C®(T"MeW).

This is the beginning of a resolution, the (dualized, generalized) Bernstein-Gelfand-
Gelfand resolution, of W (or, more accurately, of the sheaf of parallel sections of

A differential geometer or topologist, asked to extend (1.1), would immediately
come up with a resolution by a complex of first order differential operators, the twisted
de Rham complex:

C®(W) = C®(T*M @ W) — C®°(A*T*"M @ W) — CX(AT*M @ W) — -+
The problem with this resolution is that W is often quite a complicated bundle, and
hence so are the bundles in this resolution. Bernstein, Gel’fand and Gel’fand [5] found

a way to break up these bundles under the action of P using differential projections
and hence obtain a resolution with much simpler bundles, but perhaps higher order
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differentials. (In fact, they only considered the Borel case, and their construction was
generalized to arbitrary parabolics by Lepowsky [22].)

This paper is about the curved version of this construction, which began with the
work of Baston [3] (see also [7, 14, 16]), who gave a double complex construction of
the BGG resolution in the case that N is abelian, and argued that his construction
could be generalized to curved geometries, with one crucial difference. Namely (as one
might expect from the twisted de Rham sequence above) the curved BGG sequence
is no longer a complex. Unfortunately, Baston’s proofs were not entirely clear, and
it was not until the work of Cap, Slovak, and Soutek [11] that the curved BGG
sequences were obtained for arbitrary parabolic geometries, and with full arguments.

My goal in this paper is to try to indicate why this is a significant achievement and
why curved BGG sequences might be useful in practice. In other words, my focus
will be on applications rather than the theory.

For applications, the main thing needed from the theory is an efficient algorithm
for computing the bundles in the BGG sequence. These bundles are associated to
Lie algebra homology groups, and most algorithms to compute them are based on
Kostant’s theorem [20], which states that this homology can be obtained by applying
the affine action of Weyl group reflections to the highest weight vector of W.

I want to explain how to do this, using some notation devised a few years ago for
representations of parabolic subgroups.

Let G have rank m and let ¢1,...€, be an orthonormal basis for the Cartan
subalgebra h = h* so that the roots are given in the “standard” form that one finds
in any book on Lie theory (e.g. [19]): for type A,, and G2 it is more convenient to
identify h with R™*1/((1,1,...1)) or R3/((1,1,1)). In terms of this basis, all but one
or two of the simple roots of g are of the form ¢; —&;1.

The highest weights of irreducible representations may now be described by m-
tuples (Aq, ... Ay )—or (m+1)-tuples for A,, and Go—where the entries are “integral”
in the sense that the inner products with the coroots are integers (this usually means
the entries are all integers, or all half-integers in some cases). In order to have a
representation of GG, this weight has to be to be G-dominant, i.e., the inner product
of > A\;e; with the simple roots should be non-negative. In practice this means that
A1 = A2 = -+ = Ay, with some additional inequalities depending on the type of the Lie
group. For representations of P, only P-dominance is needed, i.e., the inequality only
needs to hold for roots of the Levi factor of P. In terms of the Dynkin diagram, whose
nodes are in one-to-one correspondence with simple roots, this means the inequalities
corresponding to crossed nodes need not hold.

If the node corresponding to €; — €;41 is crossed, then the highest weight of a
P-representation need not satisfy A; > A;y1. This can be indicated by writing the
highest weights of P-representations as (A1, ... \i|A\i+1, .- Am). If this highest weight
happens to satisfy A; > \;41 anyway, then the corresponding P-representation is
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the irreducible P-subrepresentation generated by the highest weight vector of the
G-representation associated to (A1,... A, Aig1, ... Am).

This works well for the simple examples which arise in practice. If more nodes are
crossed, then more bars are needed, although in general, one would have to dream
up a different notation for the exceptional roots at the right hand end of the Dynkin
diagram.

The Weyl group is generated by reflections in the hyperplanes orthogonal to the
simple roots. The advantage of working in an orthonormal basis is that reflections are
easy to handle. In particular, a (not necessarily simple) root €; —¢; acts by exchanging
A; and A;. The affine action is obtained by conjugating this action with translation
by the half sum of the positive roots. In practice this means that (¢; —¢;).A = A
where \; = \j — (j —4) and \j = \; + (j — i). Note that if \; > \; (for i < j) then
;\i < S\j.

A more systematic notation involves using the basis corresponding to the funda-
mental weights, perhaps indicating the coefficients by writing them above the nodes
on the Dynkin diagram [4]. The problem with this notation is that non-simple root
reflections are difficult to apply, which entails a two pass procedure to compute the
BGG sequence (again, see [4]).

The zeroth bundle in the BGG sequence of a G-representation \ is associated to
the irreducible P-subrepresentation with the same highest weight. The first bundle
is associated to the direct sum of all irreducible P-representations whose highest
weight can be obtained by applying a simple affine root reflection to A. The second
bundle is obtained by applying a second, not necessarily simple, affine root reflection
to these weights and keeping the P-dominant weights which can be obtained from
A by a composite of two simple affine root reflections. One continues applying root
reflections in this way, so that the length of the element of the Weyl group (in terms of
simple roots) increases by one at each step. It is usually easy to see which reflections
will give P-dominant weights: in simple examples there are often only one or two
reflections which work, and the they will often automatically increase the length of
the element of the Weyl group by one. Furthermore, the same sequence of reflections
generates the BGG sequence of any generic G-representation. In conformal geometry,
the sequence of root reflections begins €1 — €2,61 — 3,61 — €4, .. ..

For example, the BGG resolution of the trivial representation in conformal geo-
metry starts as follows:

0 — (0,0,0,...0) — (0]0,0,...0) — (=1/1,0,...0) — (=2[1,1,0,...0) — -- -

Here, and throughout the paper, I adopt the usual convention of denoting a represent-
ation, an associated bundle and its (sheaf of) smooth sections by the corresponding
highest weight. In conventional terms, the first entry of (A1]|A2,... A, ) is the con-
formal weight, while the remaining elements describe the representation of SO(n),
the semisimple part of L. If >°,o,[\;| = k then the representation is a subspace
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