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TWISTOR AND KILLING SPINORS
IN LORENTZIAN GEOMETRY

by

Helga Baum

Abstract. — This paper is a survey of recent results concerning twistor and Killing
spinors on Lorentzian manifolds based on lectures given at CIRM, Luminy, in June
1999, and at ESI, Wien, in October 1999. After some basic facts about twistor spinors
we explain a relation between Lorentzian twistor spinors with lightlike Dirac current
and the Fefferman spaces of strictly pseudoconvex spin manifolds which appear in
CR-geometry. Secondly, we discuss the relation between twistor spinors with timelike
Dirac current and Lorentzian Einstein Sasaki structures. Then, we indicate the local
structure of all Lorentzian manifolds carrying real Killing spinors. In particular, we
show a global Splitting Theorem for complete Lorentzian manifolds in the presence
of Killing spinors. Finally, we review some facts about parallel spinors in Lorentzian
geometry.

Résumé(Twisteurs et spineurs de Killing en géométrie lorentzienne). — Le présent papier
est un article de synthèse basé sur les exposés donnés au CIRM, Luminy, en juin
1999, et à l’ESI, Vienne, en octobre 1999, concernant des nouveaux résultats sur les
spineurs twisteurs et les spineurs de Killing lorentziens. Après quelques préliminaires
sur les spineurs twisteurs, on met en évidence des relations entre les spineurs twisteurs
lorentziens admettant un courant de Dirac isotrope et les espaces de Fefferman des
variétés spinorielles strictement pseudoconvexes qui apparaissent dans la géométrie
CR. De plus, on décrit la relation entre les spineurs twisteurs admettant un courant
de Dirac de type temps et les structures de Sasaki-Einstein lorentziennes. On indique
aussi la structure locale des variétés lorentziennes admettant des spineurs de Killing
réels. En particulier, on obtient un théorème de < splitting > global pour les variétés
lorentziennes complètes qui admettent des spineurs de Killing. Enfin, on fait le point
sur la théorie des spineurs parallèles en géométrie lorentzienne.
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1. Introduction

Twistor spinors were introduced by R.Penrose and his collaborators in General
Relativity as solutions of a conformally invariant spinorial field equation (twistor
equation) (see [Pen67], [PR86], [NW84]). Twistor spinors are also of interest in
physics since they define infinitesimal isometries in semi-Riemannian supergeometry
(see [ACDS98]). In Riemannian geometry the twistor equation first appeared as an
integrability condition for the canonical almost complex structure of the twistor space
of an oriented four-dimensional Riemannian manifold (see [AHS78]). In the second
half of the 80’s A.Lichnerowicz started the systematic investigation of twistor spinors
on Riemannian spin manifolds from the view point of conformal differential geometry.
Nowadays one has a lot of structure results and examples for manifolds with twis-
tor spinors in the Riemannian setting (see e.g. [Lic88b], [Lic88a], [Lic89], [Wan89],
[Fri89] [Lic90], [BFGK91], [Hab90], [Bär93], [Hab94], [Hab96], [KR94], [KR96],
[KR97b], [KR97a], [KR98]).
An other special kind of spinor fields related to Killing vector fields and Killing tensors
and therefore called Killing spinors is used in supergravity and superstring theories
(see e.g. [HPSW72], [DNP86], [FO99a], [AFOHS98]). In mathematics the name
Killing spinor is used (more restrictive than in physics literature) for those twistor
spinors which are simultaneous eigenspinors of the Dirac operator. The interest of
mathematicians in Killing spinors started with the observation of Th. Friedrich in
1980 that a special kind of Killing spinors realise the limit case in the eigenvalue estim-
ate of the Dirac operator on compact Riemannian spin manifolds of positive scalar
curvature. In the time after the Riemannian geometries admitting Killing spinors
were intensively studied. They are now basically known and in low dimensions com-
pletely classified (see [BFGK91] [Hij86], [Bär93]). These results found applica-
tions also outside the spin geometry, for example as tool for proving rigidity theorems
for asymptotically hyperbolic Riemannian manifolds (see [AD98], [Her98]). In the
last years the investigation of special adapted spinorial field equations was exten-
ded to Kähler, quaternionic-Kähler and Weyl geometry (see e.g. [MS96], [Mor99],
[KSW98], [Buc00b], [Buc00a]).

In opposite to the situation in the Riemannian setting, there is not much known
about solutions of the twistor and Killing equation in the pseudo-Riemannian setting,
where these equations originally came from. The general indefinite case was studied
by Ines Kath in [Kat00], [Kat98], [Katb], [Kata], where one can find construction
principles and examples for indefinite manifolds carrying Killing and parallel spinors.
In the present paper we restrict ourselves to the Lorentzian case. We explain some
results concerning the twistor and Killing equation in Lorentzian geometry, which we
obtained in a common project with Ines Kath, Christoph Bohle, Felipe Leitner and
Thomas Leistner.
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2. Basic facts on twistor spinors

Let (Mn,k, g) be a smooth semi-Riemannian spin manifold of index k and dimension
n ≥ 3 with the spinor bundle S. There are two conformally covariant differential
operators of first order acting on the spinor fields Γ(S), the Dirac operator D and the
twistor operator (also called Penrose operator) P . The Dirac operator is defined as
the composition of the spinor derivative ∇S with the Clifford multiplication µ

D : Γ(S) ∇S

−→ Γ(T ∗M ⊗ S)
g
≈ Γ(TM ⊗ S)

µ−→ Γ(S),

whereas the twistor operator is the composition of the spinor derivative ∇S with the
projection p onto the kernel of the Clifford multiplication µ

P : Γ(S) ∇S

−→ Γ(T ∗M ⊗ S)
g
≈ Γ(TM ⊗ S)

p−→ Γ(kerµ).

The elements of the kernel of P are called twistor spinors. A spinor field ϕ is a twistor
spinor if and only if it satisfies the twistor equation

∇S
Xϕ+

1
n
X ·Dϕ = 0

for each vector field X . Special twistor spinors are the parallel and the Killing spinors,
which satisfy simultaneous the Dirac equation. They are given by the spinorial field
equation

∇S
Xϕ = λX · ϕ , λ ∈ C.

The complex number λ is called Killing number.

We are interested in the following geometric problems:

1. Which semi-Riemannian (in particular Lorentzian) geometries admit solutions
of the twistor equation?

2. How the properties of twistor spinors are related to the geometric structures
where they can occur.

The basic property of the twistor equation is that it is conformally covariant: Let
g̃ = e2σg be a conformally equivalent metric to g and let the spinor bundles of (M, g)
and (M, g̃) be identified in the standard way. Then for the twistor operators of P and
P̃ the relation

P̃ϕ = e−
1
2σP (e−

1
2σϕ)

holds.
Let us denote by R the scalar curvature and by Ric the Ricci curvature of (Mn,k, g).
K denotes the Rho tensor

K =
1

n− 2

{
R

2(n− 1)
g − Ric

}
.

We always identify TM with TM∗ using the metric g. For a (2, 0)-tensor field B we
denote by the same symbol B the corresponding (1, 1)-tensor field B : TM −→ TM ,
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g(B(X), Y ) = B(X,Y ). Let C be the (2,1)-Cotton-York tensor

C(X,Y ) = (∇XK)(Y )− (∇Y K)(X).

Furthermore, let W be the (4,0)-Weyl tensor of (M, g) and let denote by the same
symbol the corresponding (2,2)-tensor field W : Λ2M −→ Λ2M. Then we have the
following integrability conditions for twistor spinors

Proposition 2.1([BFGK91, Th.1.3, Th.1.5]). — Let ϕ ∈ Γ(S) be a twistor spinor and
η = Y ∧ Z ∈ Λ2M a two form. Then

D2ϕ =
1
4

n

n− 1
Rϕ(1)

∇S
XDϕ =

n

2
K(X) · ϕ(2)

W (η) · ϕ = 0(3)

W (η) ·Dϕ = nC(Y, Z) · ϕ(4)

(∇XW )(η) · ϕ = X · C(Y, Z) · ϕ+
2
n
(X − W (η)) ·Dϕ(5)

If (Mn, g) admits Killing spinors the Ricci and the scalar curvature of M satisfy
in addition

Proposition 2.2. — Let ϕ ∈ Γ(S) be a Killing spinor with the Killing number λ ∈ C.
Then

1. (Ric(X)−4λ2(n−1)X) ·ϕ = 0 . In particular, the image of the endomorphism
Ric−4λ2(n− 1)idTM is totally lightlike.

2. The scalar curvature is constant and given by R = 4n(n− 1)λ2 . The Killing
number λ is real or purely imaginary.

If the Killing number λ is zero (R = 0), ϕ is a parallel spinor, in case λ is real and
non-zero (R > 0), ϕ is called real Killing spinor, and in case λ is purely imaginary
(R < 0), ϕ is called imaginary Killing spinor.
We consider the following covariant derivative in the bundle E = S ⊕ S

∇E
X :=

(
∇S

X
1
nX ·

−n
2K(X) ∇S

X

)
.

Using the integrability condition (2) of Proposition 2.1 one obtains the following

Proposition 2.3([BFGK91, Th.1.4]). — For any twistor spinor ϕ it holds ∇E
(

ϕ
Dϕ

)
= 0.

Conversely, if
(
ϕ
ψ

)
is ∇E-parallel, then ϕ is a twistor spinor and ψ = Dϕ.

The calculation of the curvature of ∇E and Proposition 2.3 yield

Proposition 2.4. — The dimension of the space of twistor spinors is conformally in-
variant and bounded by

dimkerP ≤ 2[ n
2 ]+1 = 2 · rankS =: dn.
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For each simply connected, conformally flat semi-Riemannian spin manifold the di-
mension of the space of twistor spinors equals dn. On the other hand, the maximal
dimension dn can only occur if (M, g) is conformally flat.

Let Mn,k be a conformally flat manifold with the universal covering M̃n,k. The
bundle E is a tractor bundle associated to the conformal structure of (M, g) and ∇E

is the covariant derivative on E defined by the normal conformal Cartan connection.
(For the definition of tractor bundles see for example [CG99]). Using this description
one obtains a development of M̃n,k into a covering Ĉn,k of the (pseudo-) Möbius
sphere. The corresponding holonomy representation

ρ : π1(M) −→ O(k + 1, n− k + 1)

of the fundamental group of M characterizes conformally flat spin manifolds with
twistor spinors.

Proposition 2.5([KR97a], [Lei00b]). — A conformally flat semi-Riemannian manifold
is spin and admits twistor spinors iff the holonomy representation ρ admits a lift

ρ̃ : π1(M) −→ Spin(k + 1, n− k + 1)

and the the representation of π1(M) on the spinor module ∆k+1,n−k+1 has a proper
trivial subrepresentation.

If the scalar curvature R of (Mn,k, g) is constant and non-zero, the integrability
conditions (1) and (2) of Proposition 2.1 show that the spinor fields

ψ± :=
1
2
ϕ±

√
n− 1
nR

Dϕ

are formal eigenspinors of the Dirac operator D to the eigenvalue ± 1
2

√
nR
n−1 .

For an Einstein space (Mn,k, g) with constant scalar curvature R = 0 the spinor
fields ψ± are Killing spinors to the Killing number λ = ∓ 1

2

√
R

n(n−1) . Hence, on
this class of semi-Riemannian manifolds each twistor spinor is the sum of two Killing
spinors.

To each spinor field ϕ we associate a vector field Vϕ (Dirac current) by the formula

g(Vϕ, X) := ik+1〈X · ϕ,ϕ〉 , X ∈ Γ(TM).

Proposition 2.6. — Let ϕ ∈ Γ(S) be a twistor spinor. Then Vϕ is a conformal vector
field with the divergence

div(Vϕ) = −2(−1)[
k
2 ] h(〈Dϕ,ϕ〉) ,

where h(f) denotes the real part of f if the index k of g is odd and the imaginary part
of f , if the index k of g is even.
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