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DIFFUSION RATE OF WINDTREE MODELS
AND LYAPUNOV EXPONENTS

by Charles Fougeron

Abstract. — Consider a windtree model with several parallel arbitrary right-angled
obstacles placed periodically on the plane. We show that its diffusion rate is the
largest Lyapunov exponent of some stratum of quadratic differentials and exhibit a
new general strategy to compute the generic diffusion rate in a family of such models.
This result enables us to numerically compute the diffusion rates of a wide class of
windtree models and to observe its asymptotic behavior according to the shape of the
obstacles.

Résumé (Diffusion du vent dans les arbres et exposants de Lyapunov). — Nous consi-
dérons un modèle de vent dans les arbres avec des obstacles reproduits périodiquement
dans le plans. Les obstacles seront ici des polygones à angles droits dont un des cô-
tés est parallèle au coté d’un autre obstacle. En introduisant une stratégie générale,
nous montrons que le taux de diffusion pour un élément générique de cette famille de
modèles est le plus grand exposant de Lyapunov associé à une strate de différentielles
quadratiques. Celui permet un calcul numérique des taux de diffusion sur une grande
variétés de modèles et nous observons dans un deuxième temps le comportement as-
symptotique de celui-ci en faisant varier la forme des obstacles.
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26 C. FOUGERON

1. Introduction

The windtree model was first introduced by Paul and Tatiana Ehrenfest
in 1912 [7] as part of statistical physics investigations. In this book they set
a simplified model for non-interacting light particles moving around massive
particles that do not move, but on which the light particles collide with elas-
tic collisions. We classically refer to the light particles as the wind and the
static ones as trees. The motivation of the two physicists was to understand
the kinetic behavior of such a system. They asked, among others, the following
question: for a generic disposition of square trees orientated in the same di-
rection, does the speed of K light particles equidistribute asymptotically in the
four possible directions?

Plenty of questions have been studied on this model, in particular for the Z2-
periodic case with square obstacles. The results feature alternatively elements
of chaotic and periodic behavior. In [16] the recurrence of billiard flow was
proven along with abnormal diffusion for special dimensions of the obstacles.
In [12] the genericity of non-ergodic behavior was shown, and its diffusion rate
was computed to be 2/3 in [5]. A positive answer to the original question has
only been provided very recently by [17].

In parallel a similar model with smooth convex obstacles has been studied
by a large amount of mathematicians throughout the twentieth century (see
e.g. [2] or [19]). In this case, the billiards satisfy some hyperbolicity property
and the behavior of its flow is closely related to a Brownian motion.

A good tool to check if a polygonal windtree model has such an hyperbolic
behavior is provided by the diffusion rates which should be 1/2 in the case
of Brownian-like motions. In particular the result of [5] destroys any hope of
directly applying the methods of the smooth convex case to the rectangular
model. The question is still open in the case of the asymptotic behavior of
polygonal shapes approaching smooth convex ones, for example with the circle:
is the diffusion rate of periodic windtree models with regular n-gons going to
1/2 when n goes to ∞? We hope that developing methods to compute these
diffusion rates in more general settings will provide a first step to understanding
this asymptotic behavior and the non-convex obstacles cases.

The arguments of [5] rely on a remarkable correspondence between the dif-
fusion rate of an infinite periodic billiard table and the Lyapunov exponent
of an associated translation surface. This computation was generalized in [6]
to any Z2-periodic windtree whose trees have only right angles and are hori-
zontally and vertically symmetric. In every of these cases, the corresponding
Lyapunov exponent belongs to some 2 dimensional subbundle of the Hodge
bundle. Moreover in all of these cases the Lyapunov exponent is rational and
can be computed using some geometric arguments.

We introduce a general strategy to exhibit the Lyapunov exponent of some
locus in a stratum that correspondsto the diffusion rate of a given periodic
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windtree model. First we identify a common orbit closure of almost all trans-
lation surfaces associated to a family of windtree tables; then we find an ir-
reducible subbundle of the Hodge bundle on this locus whose top Lyapunov
exponent is exactly the diffusion rate. The tools for the first craft are given by
recent results of [10], [21] and [22] and are introduced in subsection 4.2. For
the second one, we show an additional lemma to the work of [3] which yields
the diffusion rate for any translation surface in a generic direction.

In particular, we show that computing the orbit closure of a generic element
of a family of windtree models boils down to constructing good examples in
the family, for which there are favorable cylinders. This enables us to show
inductively that the initial orbit closure contains bigger and bigger families of
translation surfaces, and eventually to prove the density of almost all surfaces
in the family.

We apply this method to the case of a periodic windtree with several obsta-
cles in its fundamental domain. We pick a family of n ≥ 2 rectangular obstacles
inside a rectangle, each rectangle having its sides parallel to one side of the fun-
damental rectangle, and repeat this table Z2-periodically in the plane. We can
then show the following theorem,

Theorem 1.1. — For all n ≥ 2, and almost every length parameter in this
family of windtree models, in almost every direction, the diffusion rate is equal
to the top Lyapunov exponent of Q(14n).

Figure 1.1. An example of a configuration of obstacles for
which Theorem 1.1 applies for generic lengths

This theorem generalizes to obstacles with an arbitrary number of right
angles, whose sides are parallel to the side of the rectangular fundamental
domain. If n is the number of obstacles and p the total number of inward
(concave) right angles in all the obstacles, we have a similar result,

Theorem 1.2. — For all n ≥ 2, p ≥ 0, and almost every length parameter in
this family of windtree models, in almost every direction, the diffusion rate is
equal to the top Lyapunov exponent of Q(14n+p,−1p).
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28 C. FOUGERON

Figure 1.2. An example of a configuration of obstacles for
which Theorem 1.2 applies for generic lengths

In the last section we discuss the value of these exponents by running numer-
ical experiments with a Sage code developed by the author in a collaborative
project [4]. These experiments give strong evidence that the family we have
introduced above can approach arbitrarily close to any diffusion rate between
1/2 and 0. In particular it goes to 1/2 (i.e. the diffusion rate of the Brownian
motion) when the number of obstacles goes to infinity.
Acknowledgments. — I am very grateful to VincentDelecroix andAnton Zorich
who suggested this problem during my PhD. I thank heartily Ferrán Valdez and
Alex Wright for useful discussions, and the Max Planck institute for hosting
me while working on the last version of this article.

2. Translation surfaces

2.1. Definitions. — A translation surface is a surface whose change of charts
are translations. Such a surface is endowed with a flat metric (the pull-back of
the canonical metric on R2) and a canonical direction.

One way to think of these translation surfaces is by gluing the sides of a
polygon via translations. Let P be a polygon with 2k edges and let z1, . . . , z2k
be complex numbers associated with the vectors of its sides. We assume that
zi = zk+i, and glue the sides zi and zk+i to obtain a flat surface with conical
singularities of angle multiples of 2π. These numbers are called periods of the
translation surface.

We can define similar structures allowing the change of charts to be also
translations composed with −Id. The class of surfaces we obtain are called
half-translation surfaces. The periods are still defined in the same way, but
depend up to a sign on the choice of side.
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Using triangulations Veech showed in [20] that this is a general construction
with a notion of pseudo-polygons (in a much wider class of structures). The
complex numbers (zi)1≤i≤k (defined up to a sign in the case of half-translation
surfaces) induce local coordinates in the moduli space of such structures, we
call them period coordinates. We will introduce them as periods of abelian
differentials below.
2.1.1. Differentials and moduli spaces. — There is a one-to-one correspon-
dence between compact translation surfaces and Riemann surfaces equipped
with a non-zero holomorphic 1-form. As well as between compact half-transla-
tion surfaces and Riemann surfaces equipped with quadratic differentials.

For g ≥ 1 let d1, . . . , dk ≥ 0 and m1, . . . ,mk ≥ −1 be integers such that
d1 + · · ·+ dk = 2g − 2 and m1 + · · ·+mk = 4g − 4. The strata H(d1, . . . , dk)
and Q(m1, . . . ,mk) are defined to be the sets of couples (S, ω) and (S, q) where
S is a genus g closed Riemann surface, ω is a holomorphic 1-form on S, q
is a quadratic differential form eventually with simple poles, and their zeros
multiplicities are given respectively by d1, . . . , dk andm1, . . . ,mk (a multiplicity
of −1 corresponding to a simple pole). The conical points in a translation
surface correspond to the zeros of the differential. If d is the multiplicity of the
zero, the angle is equal to 2(d+1)π (and (d+2)π for half-translation surfaces).

Given a translation surface (S, ω), let Σ ⊂ S be the set of zeros of ω. Pick
a basis {ξ1, . . . , ξn} for the relative homology group H1(S,Σ;Z). The map
Φ : H(α)→ Cn defined by

Φ(S, ω) =
(∫

ξ1

ω, . . . ,

∫
ξn

ω

)
redefines local period coordinates with translation as change of charts as above.

There is a natural action of GL(2,R) on connected components of strata
coming from the linear action of GL(2,R) on R2 in charts. For any translation
surface in a stratum, its orbit closure via this action is some affine invariant
manifold of the stratum: it is defined in local period coordinates by linear
equations. They are endowed with a canonical measure supported on these
manifolds called affine measures [9], [10].

In these coordinates, and for any affine subspace, we can define a notion
of zero Lebesgue measure subsets. This is what we will refer to when saying
Lebesgue-almost every surface. It can also be understood with respect to the
Masur–Veech measure in the whole stratum (see [24] for a detailed introduc-
tion).
2.1.2. Translation cover. — To any half-translation surfaces S which is not a
squared holomorphic form we associate its translation cover Ŝ corresponding
to the subgroup of the fundamental group with holonomy equal to −1. It is a
double cover. We endow Ŝ with the pulled-back metric of S which defines a
translation surface structure for Ŝ.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE


