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SINGULAR VECTORS AND GEOMETRY AT INFINITY
OF PRODUCTS OF HYPERBOLIC SPACES

by Toshiaki Hattori

Abstract. — Let k be a number field and kM the Minkowski space associated
to k. Dirichlet’s theorem in Diophantine approximation is generalized to the case
of approximations of vectors in kM by elements of k. We study the set of singular
elements of kM in this setting and calculate its Hausdorff dimension, by relating
the inequalities to Tits geometry of the geometric boundary of the symmetric space
naturally associated to k.
Résumé (Vecteurs singuliers et géométrie à l’infini des produits d’espaces hyper-
boliques). — Soient k un corps de nombres algébriques et kM l’espace de Minkowski
associé à k. Le théorème de Dirichlet en approximation diophantienne se généralise
au cas de l’approximation de vecteurs dans kM par des éléments de k. Nous étudions
l’ensemble des éléments singuliers de kM dans ce cadre et nous calculons sa dimension
de Hausdorff, en reliant les inégalités définissant les vecteurs singuliers à la géométrie
de Tits du bord géométrique de l’espace symétrique naturellement associé à k.

1. Introduction

In the classical theory of Diophantine approximation, a real number x is said
to be badly approximable if there exists a positive constant C such that

|q| |qx− p| ≥ C
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18 T. HATTORI

for all integers p, q with q 6= 0; a real number y is called singular if, for every
ε > 0, there exists a positive constant C0(ε) such that the set of inequalities

0 < q ≤ C, |qy − p| < εC−1

has an integral solution (p, q) for all C greater than C0(ε). The set of badly
approximable numbers has zero Lebesgue measure and is thick ([4], [26]). By
contrast, the set of singular numbers is identical to the set of rational numbers,
and hence its Hausdorff dimension is equal to zero (see [7, p. 94]).

The goal of this paper is to generalize the latter result into the setting of
algebraic number fields. More precisely, let k be a number field of degree d =
l+ 2m with l real places and m complex places. Let ι1, . . . , ιl : k −→ R be the
real embeddings if l is positive, and let ιl+1, . . . , ιl+m : k −→ C be the complex
embeddings that are not complex conjugate to each other if m is positive. We
approximate elements of the Minkowski space kM = Rl ×Cm associated to k
by elements of k through the twisted diagonal embedding ιk : k −→ kM given
by

ιk(a) = (ι1(a), . . . , ιl+m(a)) for a ∈ k .

For ξ = (ξ1, . . . , ξl+m), µ = (µ1, . . . , µl+m) ∈ kM , we define their sum and
product by

ξ + µ = (ξ1 + µ1, . . . , ξl+m + µl+m) , ξ · µ = (ξ1µ1, . . . , ξl+mµl+m)

and we equip kM with the sup norm

‖ξ‖ = max
1≤i≤l+m

|ξi| ,

where | · | is the usual Euclidean absolute value on R or C. Let Ok be the ring
of integers of k.

The following generalization of Dirichlet’s theorem (cf. [32, Chapter I]) is
obtained from a result of R. Quême ([30]).

Theorem 1.1 (cf. [30]). — There exists a positive constant C depending only
on k such that for every ξ ∈ kM−ιk(k), there are infinitely many β = p/q ; p ∈
Ok, q ∈ Ok − {0} satisfying

‖ιk(q) · ξ − ιk(p)‖ < C‖ιk(q)‖−1 .(1)

A vector ξ ∈ kM is called k-badly approximable if there exists a positive
constant C depending on ξ such that

‖ιk(q)‖ ‖ιk(q) · ξ − ιk(p)‖ ≥ C(2)

for any p ∈ Ok and q ∈ Ok − {0} (see [13]). Let Bad(k) be the set of k-badly
approximable vectors in kM .
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In this paper, we say that ξ ∈ kM is a k-singular vector if, for each ε > 0,
the set of inequalities

‖ιk(q)‖ ≤ C, ‖ιk(q) · ξ − ιk(p)‖ < εC−1

has a solution (p, q) ∈ (Ok)2 with q 6= 0 for all C greater than some positive
constant C0(ε) depending on ξ and ε. Otherwise, we say that ξ is k-regular.
Note that k-badly approximable vectors are k-regular. Let Sing(k) be the set
of k-singular vectors.

The set Bad(k) has already been studied in [4], [10], [13], [15] and [27].
Generalizing the results in the case of the rational field and the results [10,
Theorem 5.2], [15] in the case of imaginary quadratic fields with class number
1, M. Einsiedler, A. Ghosh, and B. Lytle showed the following.

Theorem 1.2 ([13]). — The set Bad(k) has zero Lebesgue measure in kM
when we regard kM as Rd. It is also thick, and its Hausdorff dimension
dimH(Bad(k)) is equal to d.

To state our results on Sing(k) we introduce an integral-valued function fk
on kM . For any finite set S, let #S denote the cardinality of S. For any
nonnegative integer q, let N(q) be the set of all positive integers smaller than
q+1. We also write a(j) instead of ιj(a) for a ∈ k. Let ξ = (ξ1, . . . , ξl+m) ∈ kM .
We define a subset A(ξ) of {0, . . . , l} × {0, . . . ,m} as follows: (λ, µ) ∈ A(ξ) if
and only if there exist a subset I1 of N(l), a subset I2 of N(l+m)rN(l), and
an element η of k such that #I1 = λ, #I2 = µ, and

ξk 6= η(k) for k ∈ I1 ∪ I2 , ξk = η(k) for k /∈ I1 ∪ I2 .

We define a function fk : kM −→ Z by

fk(ξ) = min {λ+ 2µ | (λ, µ) ∈ A(ξ)} for ξ ∈ kM .(3)

We remark that ξ ∈ ιk(k) if and only if fk(ξ) = 0.
Generalizing the result in the case k = Q, we show the following.

Theorem 1.3. — Let ξ ∈ kM = Rl ×Cm. Then ξ is k-singular if and only if
fk(ξ) < d/2.

Theorem 1.4. — Let

d′ =





(d− 1)/2 if d is odd
d/2− 2 if d is even, l = 0 and m is even
d/2− 1 otherwise.

Then the Hausdorff dimension of the subset Sing(k) of kM is equal to d′ when
we regard kM as Rd. The set Sing(k) is identical to ιk(k) if and only if k is
the rational field Q or a quadratic field or a totally complex quartic field.
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Theorem 1.3 also provides a criterion of being “not k-badly approximable”
in the case Sing(k) 6= ιk(k). Although measure theoretic properties of Bad(k)
are well studied, it is another problem to know whether or not a given element
of kM is k-badly approximable.

In the classical case, it is well known that a real number is badly approx-
imable if and only if the partial quotients in its continued fraction expansion
are bounded (cf. Theorem 5F of [32, Chapter I]). This was generalized to the
case of Q(

√
−3) in [9], the case of arbitrary imaginary quadratic field in [25]. E.

Burger and R. Hines found methods to construct k-badly approximable vectors
for any k different from Q ([6], [24]). There is another method to construct
k-badly approximable vectors in the case l+m ≥ 2: Proposition 3.1 of [13] and
the argument in the proof of Proposition 8.5 of [20] show that (b, . . . , b) ∈ kM
is k-badly approximable for any badly approximable real number b.

On the other hand, there were no known concrete criteria to ensure that a
vector in kM is not k-badly approximable in the case l +m ≥ 2, even though
Bad(k) is a set of measure zero.

Example. — Let ζ be a primitive complex 7th root of unity and k the cyclo-
tomic field Q(ζ). Let a ∈ k and b be a badly approximable real number that is
not contained in k. Then (a(1), a(2), b), (a(1), b, a(3)), (b, a(2), a(3)) ∈ kM = C3

are not k-badly approximable, while (b, b, b) ∈ kM is k-badly approximable.

We outline the proofs of the main results. Our approach is based on Rie-
mannian geometry of nonpositively curved manifolds (see [1], [11] and [12]).

In [17], L.R. Ford found that Dirichlet’s theorem is closely related to the
geometry of the hyperbolic plane H. He considered horoballs in the upper
half-plane H together with the action of SL(2,Z) on H. After Ford, con-
nections between Diophantine approximation problems and the geometry of
hyperbolic spaces, or more generally Gromov hyperbolic spaces, were studied
extensively by many authors (see, for example, [23], [16] and references therein).
Some product spaces of hyperbolic spaces were also used in [20] and [28] for
approximation by algebraic numbers.

From this point of view, it is natural in our case to consider horoballs in the
product of l copies of the hyperbolic plane and m copies of the 3-dimensional
hyperbolic space together with the action of Γ = SL(2,Ok) on this product.

Let V = SL(2,R)/SO(2) and V̂ = SL(2,C)/SU(2). We identify V (respec-
tively V̂ ) with the upper half-plane H (respectively the three-dimensional upper
half-spaceH) in the usual manner (see Section 2 for a more precise description),
and equip V (respectively V̂ ) with the Poincaré metric (respectively the metric
that is twice the Poincaré metric onH). The group G = SL(2,R)l×SL(2,C)m
acts on the Riemannian product Ṽ = V l × V̂ m by

g · z = (g1 · x1, . . . , gl · xl, gl+1 · x̂l+1, . . . , gl+m · x̂l+m)(4)
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for z = (x1, . . . , xl, x̂l+1, . . . , x̂l+m) ∈ Ṽ and g = (g1, . . . , gl+m) ∈ G, where
x1, . . . , xl ∈ V and x̂l+1, . . . , x̂l+m ∈ V̂ . Note that, in the case l = 0 or m = 0,
an obvious modification should be made to this formula (4). However, in the
rest of this paper, we omit to write such modified formulae in order to avoid
complicating the description. We extend each embedding ιj to an embedding
of SL(2,k) into SL(2,R) or SL(2,C) by

ιj(g) =
(
ιj(p) ιj(r)
ιj(q) ιj(s)

)
for g =

(
p r
q s

)
∈ SL(2,k) .(5)

Then the twisted diagonal embedding ιk can be extended to an embedding
SL(2,k) −→ G by

ιk(g) = (ι1(g), . . . , ιl+m(g)) for g ∈ SL(2,k) .(6)

The group SL(2,k) acts isometrically on Ṽ through this embedding:
ιk(g) · z = (ι1(g) · x1, . . . , ιl(g) · xl, ιl+1(g) · x̂l+1, . . . , ιl+m(g) · x̂l+m)(7)

for z = (x1, . . . , xl, x̂l+1, . . . , x̂l+m) ∈ Ṽ and g ∈ SL(2,k).
Let x0 ∈ V be the coset of the identity element of SL(2, R), x̂0 ∈ V̂ the

coset of the identity element of SL(2,C), and let

z0 = (x0, . . . , x0, x̂0, . . . , x̂0) ∈ Ṽ .(8)

Then the isotropy subgroup of G at z0 is K = SO(2)l × SU(2)m, and Ṽ is
diffeomorphic to the quotient space G/K.

We associate each element of kM with a certain geodesic ray of Ṽ as follows.
Let ξ = (ξ1, . . . , ξl+m) ∈ kM . We define an element uξ of G by

uξ =
((

1 ξ1
0 1

)
, . . . ,

(
1 ξl+m
0 1

))
(9)

and define a geodesic ray γξ : [0,∞) −→ Ṽ by
γξ(t) = uξgt · z0 for t ≥ 0 ,(10)

where

gt =
((

e−t/
√

4d

et/
√

4d

)
, . . . ,

(
e−t/

√
4d

et/
√

4d

))
∈ G .(11)

Let Π : Ṽ −→ ιk(Γ )\Ṽ be the projection to the noncompact quotient space.
For any geodesic ray γ of Ṽ , we say that Π ◦ γ is divergent if, for any given
compact subset W of ιk(Γ )\Ṽ , there exists t0 ≥ 0 such that Π ◦ γ(t) /∈ W
for t ≥ t0. This condition is a paraphrase of another one written in terms of
horoballs in Ṽ and the action of ιk(Γ ) on Ṽ (see Proposition 3.2).

Proposition 1.5. — Π◦γξ is divergent if and only if ξ is a k-singular vector.
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