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UNIT VECTOR FIELDS ON
ANTIPODALLY PUNCTURED SPHERES:
BIG INDEX, BIG VOLUME

BY FABIANO G.B. BriTO, PABLO M. CHACON & DAvID L. JOHNSON

ABsTrRACT. — We establish in this paper a lower bound for the volume of a unit
vector field ¥ defined on S™ \ {£z}, n = 2,3. This lower bound is related to the sum
of the absolute values of the indices of ¥ at z and —z.

REsSUME (Champs unitaires dans les sphéres antipodalement trouées : grand indice
entraine grand volume)

Nous établissons une borne inférieure pour le volume d’un champ de vecteurs ¥
défini dans S™ \ {£z}, n = 2, 3. Cette borne inférieure dépend de la somme des valeurs
absolues des indices de ¥ en z et en —z.
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1. Introduction

The volume of a unit vector field ¥ on a closed Riemannian manifold M is
defined [10] as the volume of the section ¥ : M — T'M, where the Sasakian
metric is considered in T'M. The volume of ¥ can be computed from the
Levi-Civita connection V of M. If we denote by v the volume form, for an
orthonormal local frame {e,}"_;, we have

(1) vol(ﬁ’):/ (14 IV + 3 Ve, A Ve, 31
M a=1

ay<az 1

4+t Z ||Vea177/\ A vean,177||2) 2,
a1<-<an-1
Note that vol(7') > vol(M) and also that only parallel fields attain the trivial
minimum.

For odd-dimensional spheres, vector fields homologous to the Hopf fibra-
tion ¥y have been studied, see [10], [3], [9] and [2]. In [5], a non-trivial lower
bound of the volume of unit vector fields on spaces of constant curvature was
obtained. In S?**!  only the vector field 7 tangent to the geodesics from a
fixed point (with two singularities) attains the volume of that bound. We call
this field 7 north-south or radial vector field. We notice that unit vector fields
with singularities show up in a natural way, see also [12].

For manifolds of dimension 5, a theorem showing how the topology of a
vector field influences its volume appears in [4]. More precisely, the result in [4]
is an inequality relating the volume of ¢ and the Euler form of the orthogonal
distribution to v.

The purpose of this paper is to establish a relationship between the volume
of unit vector fields and the indices of those fields around isolated singularities.

We consider these notes to be a preliminary effort to understand this phe-
nomenon. For this reason, we have chosen a simple model where such a rela-
tionship is found. We hope this could serve as inspiration for more complex
situations to be treated in a near future.

Precisely, we prove here:

THEOREM 1.1. — Let W = S"\{N, S}, n =2 or 3, be the standard Euclidean
sphere where two antipodal points N and S are removed. Let ¥ be a unit smooth
vector field defined on W. Then,

forn=2, vol(#) = 1(r+ [Is(N)| + |I5($)] — 2)vol(S?);
forn=3, vol(@) > (Ts(N)] + |I(S)|)vol(s®),
where Iz(P) stands the Poincaré index of ¥ around P.
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It is easy to verify that the north-south field 77 achieves the equalities in the
theorem. In fact, the volume of 7 in S? is equal to 17vol(S?), and in S® is
2vol(S3). We have to point out that vol(7) = vol(¥g) in S3.

The lower bound in S® when the singularities are trivial (i.e. I3(N) =
I3(S) = 0) has no special meaning.

We will comment briefly some possible extensions for this result in Section 3
of this paper.

2. Proof of the theorem

A key ingredient in the proof of the theorem is the application of the following
result of Chern [7]. The second part of this statement is a special case of the
result of Section 3 of that article.

PROPOSITION 2.1 (see Chern [7]). — Let M™ be an orientable Riemannian
manifold of dimension n, with Riemannian connection 1-form w and curva-
ture form Q. Then, there is an (n — 1)-form Il on the unit tangent bundle
T'M with n: T'M — M the bundle projection, so that:

e(Q2 if n is even,
- {0
0 if n is odd.
In addition, frl(z)H =1 for any x € M, that is, Il|z-1(y) is the induced

volume form of the fiber 7= (x), normalized to have volume 1.

The form IT as described by Chern is somewhat complicated. First, define
forms ¢y, for k € {0, ..., [3n] — 1}, by choosing a frame {e1,...,e,} of TM, so
that {e1,...,e,—1} frame 77 1(z) at e, € 7~ !(z). Then, at e,, € T* M,

O = Z €ar o1 Qaras A A Qagr 1o N Wapsin A+ A War 1ny

1<ai,...,an—1<n—1

where €4, ..o, , is the sign of the permutation, and from this

in—1
17 —1)k
. (=1) : bk if n is even,
w2 £ 1.3 (n— 2k —1) - 2Frangl
. 1 ()
(—1)"( 2 ¢r if n is odd.
onrz( = (L(n - 1)) = k

Subsequent treatments of this general theory [8], [L1] use more elegant formu-
lations of forms similar to this, but usually only for the bundle of frames, and
avoid the case where M is odd-dimensional.
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The cases relevant to this research are for n = 2 and n = 3, where these
formulas simplify to

H:{;ﬂ_wlg ifn:2,
ﬁ (UJ13 A wa3 — 912) ifn=3.

Even though there is a common line of reasoning in the proof of both parts of
the theorem, each dimension has its special features. For that reason, we pro-
vide separate proofs for dimensions 2 and 3.

2.1. Case n = 2. — Denote by g the usual metric on S? induced from R3.
Without loss of generality we take N = (0,0,1) and S = (0,0,—1). On W we
consider an oriented orthonormal local frame {e;,es = ¥}. Its dual basis is
denoted by {61,602} and the connection 1-forms of V are w;;(X) = g(Vxej,e;)
for 4,7 = 1,2 where X is a vector in the corresponding tangent space. In
dimension 2, the volume (1) reduces to:

vol(7) :/ V1+ k24120,
S2

where k = g(Vz U, e1) is the geodesic curvature of the integral curves of ¢ and
7 = g(Ve, U, e1) is the geodesic curvature of the curves orthogonal to ¢. Also,

W12 = 761 + k‘gg

The first goal is to relate the integrand of the volume with the connection
form wiy. If S is the parallel of S* at latitude ¢ € (—3m, 37) consider the
unit field @ on S(}; such that {u,7} is positively oriented where 7 is the field
pointing toward N. Let a € [0,27] be the oriented angle from @ to ¥. Then

i =sinae; +cosav. Ifi: Si, — §? is the inclusion map, we have
(2) i*wi12(@) = 701(€) + kO2(¥) = Tsina + kcosa.

We split the domain of the integral in northern and southern hemisphere,
H* and H™ respectively. First we consider the northern hemisphere H*. From

the general inequality va? + % > |acos 8 + bsin 3| > acos S + bsin 3, for any
a,b, 8 € R, we have:

(3) V14+k?2+72>cosp+ VEkZ+72sing

> cosp + |kcosa + Tsina| sing = cosp + |i*w12(ﬁ)} sin .
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