

GEOMETRIC INSTABILITY FOR NLS ON SURFACES

Laurent Thomann

Tome 136 Fascicule 1

SOCIÉTÉ MATHÉMATIQUE DE FRANCE

Publié avec le concours du Centre national de la recherche scientifique pages 167-193

THE WKB METHOD AND GEOMETRIC INSTABILITY FOR NONLINEAR SCHRÖDINGER EQUATIONS ON SURFACES

BY LAURENT THOMANN

ABSTRACT. — In this paper we are interested in constructing WKB approximations for the nonlinear cubic Schrödinger equation on a Riemannian surface which has a stable geodesic. These approximate solutions will lead to some instability properties of the equation.

RÉSUMÉ (Méthode WKB et instabilité géométrique pour les équations de Schrödinger non linéaires sur des surfaces)

À l'aide de la méthode WKB nous construisons des solutions approchées à l'équation de Schrödinger cubique sur une variété qui possède une géodésique stable. Cette construction permet d'obtenir des résultats d'instabilités dans des espaces de Sobolev.

1. Introduction

Let (M, g) be a Riemannian surface (i.e., a Riemannian manifold of dimension 2), orientable or not. We assume that M is either compact or a compact perturbation of the euclidian space, so that the Sobolev embeddings are true. Consider $\Delta = \Delta_q$ the Laplace-Beltrami operator. In this paper we are interested in constructing WKB approximations for the nonlinear cubic Schrödinger equation

Key words and phrases. — nonlinear Schrödinger equation, instability, quasimode.

Texte reçu le 20 octobre 2006, révisé le 23 avril 2007 et le 22 janvier 2008

LAURENT THOMANN, Université Paris-Sud, Mathématiques, Bât 425, 91405 Orsay Cedex, France . *E-mail* : laurent.thomann@math.u-psud.fr Url:http://www.math.upsud.fr/~thomann

²⁰⁰⁰ Mathematics Subject Classification. — 35Q55; 35B35; 35R25.

(1)
$$\begin{cases} i\partial_t u(t,x) + \Delta u(t,x) = \varepsilon |u|^2 u(t,x), & \varepsilon = \pm 1, \\ u(0,x) = u_0(x) \in H^{\sigma}(M), \end{cases}$$

that is, given a small parameter 0 < h < 1 and an integer N, functions $u_N(h)$ satisfying

(2)
$$i\partial_t u_N(h) + \Delta u_N(h) = \varepsilon |u_N(h)|^2 u_N(h) + R_N(h),$$

with $||u_N(h)||_{H^{\sigma}} \sim 1$ and $||R_N(h)||_{H^{\sigma}} \leq C_N h^N$.

Here h is introduced so that $u_N(h)$ oscillates with frequency $\sim \frac{1}{h}$.

These approximate solutions to (1) will lead to some instability properties in the following sense (where h^{-1} will play the role of n):

DEFINITION 1.1. — We say that the Cauchy problem (1) is unstable near 0 in $H^{\sigma}(M)$, if for all C > 0 there exist times $t_n \longrightarrow 0$ and $u_{1,n}, u_{2,n} \in H^{\sigma}(M)$ solutions of (1) so that

$$\begin{aligned} \|u_{1,n}(0)\|_{H^{\sigma}(M)}, \ \|u_{2,n}(0)\|_{H^{\sigma}(M)} &\leq C, \\ \|u_{1,n}(0) - u_{2,n}(0)\|_{H^{\sigma}(M)} &\longrightarrow 0, \\ \limsup \|u_{1,n}(t_n) - u_{2,n}(t_n)\|_{H^{\sigma}(M)} &\geq \frac{1}{2}C, \end{aligned}$$

when $n \longrightarrow +\infty$.

This means that the problem is not uniformly well-posed, if we refer to the following definition:

DEFINITION 1.2. — Let $\sigma \in \mathbb{R}$. Denote by $B_{R,\sigma}$ the ball of radius R in H^{σ} . We say that the Cauchy problem (1) is uniformly well-posed in H^{σ} if the flow map

$$u_0 \in B_{R,\sigma} \cap H^1(M) \longmapsto \Phi_t(u_0) \in H^{\sigma}(M),$$

is uniformly continuous for any t.

We now state our instability result:

PROPOSITION 1.3. — Let $0 < \sigma < \frac{1}{4}$, and assume that M has a stable and non degenerated periodic geodesic (see Assumptions 1 and 2), then the Cauchy problem (1) is not uniformly well-posed.

This problem is motivated by the following results: Let (M, g) be a riemannian compact surface, then in [5], N. Burq, P. Gérard and N. Tzvetkov prove that (1) is uniformly well-posed in $H^{\sigma}(M)$ for $\sigma > \frac{1}{2}$. Whereas, in [4], they show that (1) is unstable on the sphere \mathbb{S}^2 for $0 < \sigma < \frac{1}{4}$. In fact they construct solutions of (1) of the form

(3)
$$u_n^{\kappa}(t,x) = \kappa e^{i\lambda_n^{\kappa}t} (n^{\frac{1}{4}-\sigma}\psi_n(x) + r_n(t,x)),$$

tome $136\,-\,2008\,-\,{\rm n^o}$ 1

where $0 < \kappa < 1$, $\psi_n = (x_1 + ix_2)^n$ is a spherical harmonic which concentrates on the equator of the sphere when $n \longrightarrow +\infty$ and where r_n is an error term which is small. To obtain instability, they consider $\kappa_n \longrightarrow \kappa$, then

$$\|u_n^{\kappa}(0) - u_n^{\kappa_n}(0)\|_{H^{\sigma}(\mathbb{S}^2)} \lesssim |\kappa - \kappa_n| \longrightarrow 0,$$

but

$$\|u_n^{\kappa}(t_n) - u_n^{\kappa_n}(t_n)\|_{H^{\sigma}(\mathbb{S}^2)} \gtrsim \kappa |\mathrm{e}^{i\lambda_n^{\kappa}t_n} - \mathrm{e}^{i\lambda_n^{\kappa_n}t_n}| \longrightarrow 2\kappa,$$

with a suitable choice of $t_n \longrightarrow 0$.

We follow this strategy but as the surface is not rotation invariant, the ansatz will be more complicated than (3).

This result is sharp, because in [6] they show that (1) is uniformly well-posed on \mathbb{S}^2 when $\sigma > \frac{1}{4}$.

On the other hand, in [3] J. Bourgain shows that (1) is uniformly well-posed on the rational torus \mathbb{T}^2 when $\sigma > 0$.

These results show how the geometry of M can lead to instability for the equation (1). Therefore it seems reasonable to obtain a result like Proposition 1.3 with purely geometric assumptions.

We first make the following assumption on M:

Assumption 1. — The manifold M has a periodic geodesic.

Denote by γ such a geodesic, then there exists a system of coordinates (s, r) near γ , say for $(s, r) \in \mathbb{S}^1 \times] - r_0, r_0[$, called Fermi coordinates such that (see [13], p. 80)

- 1. The curve r = 0 is the geodesic γ parametrized by arclength and
- 2. The curves s = constant are geodesics parametrized by arclength. The curves r = constant meet these curves perpendicularly.
- 3. In this system the metric writes

$$g = \begin{pmatrix} 1 & 0\\ 0 & a^2(s, r) \end{pmatrix}.$$

We set the length of γ equal to 2π . Denote by R(s,r) the Gauss curvature at (s,r), then a is the unique solution of

(4)
$$\begin{cases} \frac{\partial^2 a}{\partial r^2} + R(s,r)a = 0, \\ a(s,0) = 1, \ \frac{\partial a}{\partial r}(s,0) = 0. \end{cases}$$

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE

The initial conditions traduce the fact that the curve r = 0 is a unit-speed geodesic. In these coordinates the Laplace-Beltrami operator is

$$\Delta := \frac{1}{\sqrt{\det g}} \operatorname{div}(\sqrt{\det g} \ g^{-1} \nabla) = \frac{1}{a} \partial_s(\frac{1}{a} \partial_s) + \frac{1}{a} \partial_r(a \partial_r)$$

A function on M, defined locally near γ , can be identified with a function of $[0, 2\pi] \times] - r_0, r_0[$ such that

$$\forall (s,r) \in [0,2\pi] \times] - r_0, r_0[\quad f(s+2\pi,r) = f(s,\omega r)$$

where $\omega = 1$ if M is orientable and $\omega = -1$ if M is not. Define

(5)
$$\omega_1 = \frac{1}{2}(\omega - 1) \in \{-1, 0\}$$

From (4) we deduce that a admits the Taylor expansion

(6)
$$a = 1 - \frac{1}{2}R(s)r^2 + R_3(s)r^3 + \dots + R_p(s)r^p + o(r^p),$$

with R(s) = R(s, 0) and

(7)
$$R_k(s) = \frac{1}{k!} \frac{\partial^k a}{\partial r^k}(s, 0)$$

for $k \geq 3$.

As $a(s+2\pi,r) = a(s,\omega r)$, we deduce $R(s+2\pi) = R(s)$ and for all $j \ge 3$, $R_j(s+2\pi) = \omega^j R_j(s)$.

Let $p_2 = \frac{1}{a^2}\sigma^2 + \rho^2$ be the principal symbol of Δ , and

(8)
$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}t}s(t) = \frac{\partial p_2}{\partial \sigma} = \frac{2\sigma}{a^2}, \ \frac{\mathrm{d}}{\mathrm{d}t}\sigma(t) = -\frac{\partial p_2}{\partial s} = -\partial_s(\frac{1}{a^2})\sigma^2, \\ \frac{\mathrm{d}}{\mathrm{d}t}r(t) = \frac{\partial p_2}{\partial \rho} = 2\rho, \ \frac{\mathrm{d}}{\mathrm{d}t}\rho(t) = -\frac{\partial p_2}{\partial r} = -\partial_r(\frac{1}{a^2})\sigma^2, \\ s(0) = s_0, \ \sigma(0) = \sigma_0, r(0) = r_0, \ \rho(0) = \rho_0, \end{cases}$$

its associated hamiltonian system, where $p_2 = p_2(s(t), r(t), \sigma(t), \rho(t))$. The system (8) admits a unique solution and defines the hamiltonian flow

$$\Phi_t: (s_0, \sigma_0, r_0, \rho_0) \longmapsto (s(t), \sigma(t), r(t), \rho(t)).$$

The curve $\Gamma = \{(s(t) = t, \sigma(t) = 1/2, r(t) = 0, \rho(t) = 0), t \in [0, 2\pi]\}$ is solution of (8) and its projection in the (s, r) space is the curve γ . Now denote by ϕ the Poincaré map associated to the trajectory Γ and to the hyperplane $\Sigma = \{s = 0\}$. There exists a neighborhood \mathcal{N} of $(\sigma = 1/2, r = 0, \rho = 0)$ such that the following makes sense: solve the system (8) with the initial conditions $(0, \sigma_0, r_0, \rho_0) \in \{0\} \times \mathcal{N}$ and let T be such that $s(T) = 2\pi$, then ϕ is the application

$$\phi: (r_0, \rho_0) \longmapsto (r(T), \rho(T)).$$

томе $136 - 2008 - n^{o} 1$