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THE WKB METHOD AND GEOMETRIC INSTABILITY FOR
NONLINEAR SCHRÖDINGER EQUATIONS ON SURFACES

by Laurent Thomann

Abstract. — In this paper we are interested in constructing WKB approximations
for the nonlinear cubic Schrödinger equation on a Riemannian surface which has a
stable geodesic. These approximate solutions will lead to some instability properties
of the equation.

Résumé (Méthode WKB et instabilité géométrique pour les équations de Schrödinger
non linéaires sur des surfaces)

À l’aide de la méthode WKB nous construisons des solutions approchées à l’équa-
tion de Schrödinger cubique sur une variété qui possède une géodésique stable. Cette
construction permet d’obtenir des résultats d’instabilités dans des espaces de Sobolev.

1. Introduction

Let (M, g) be a Riemannian surface (i.e., a Riemannian manifold of dimen-
sion 2), orientable or not. We assume that M is either compact or a compact
perturbation of the euclidian space, so that the Sobolev embeddings are true.
Consider ∆ = ∆g the Laplace-Beltrami operator. In this paper we are inter-
ested in constructing WKB approximations for the nonlinear cubic Schrödinger
equation
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(1)
®
i∂tu(t, x) + ∆u(t, x) = ε|u|2u(t, x), ε = ±1,

u(0, x) = u0(x) ∈ Hσ(M),

that is, given a small parameter 0 < h < 1 and an integer N , functions uN (h)

satisfying

(2) i∂tuN (h) + ∆uN (h) = ε|uN (h)|2uN (h) +RN (h),

with ‖uN (h)‖Hσ ∼ 1 and ‖RN (h)‖Hσ ≤ CNhN .
Here h is introduced so that uN (h) oscillates with frequency ∼ 1

h .
These approximate solutions to (1) will lead to some instability properties in
the following sense (where h−1 will play the role of n):

Definition 1.1. — We say that the Cauchy problem (1) is unstable near 0

in Hσ(M), if for all C > 0 there exist times tn −→ 0 and u1,n, u2,n ∈ Hσ(M)

solutions of (1) so that

‖u1,n(0)‖Hσ(M), ‖u2,n(0)‖Hσ(M) ≤ C,

‖u1,n(0)− u2,n(0)‖Hσ(M) −→ 0,

lim sup ‖u1,n(tn)− u2,n(tn)‖Hσ(M) ≥
1

2
C,

when n −→ +∞.

This means that the problem is not uniformly well-posed, if we refer to the
following definition:

Definition 1.2. — Let σ ∈ R. Denote by BR,σ the ball of radius R in Hσ.
We say that the Cauchy problem (1) is uniformly well-posed in Hσ if the flow
map

u0 ∈ BR,σ ∩H1(M) 7−→ Φt(u0) ∈ Hσ(M),

is uniformly continuous for any t.

We now state our instability result:

Proposition 1.3. — Let 0 < σ < 1
4 , and assume that M has a stable and

non degenerated periodic geodesic (see Assumptions 1 and 2 ), then the Cauchy
problem (1) is not uniformly well-posed.

This problem is motivated by the following results: Let (M, g) be a riemannian
compact surface, then in [5], N. Burq, P. Gérard and N. Tzvetkov prove that
(1) is uniformly well-posed in Hσ(M) for σ > 1

2 . Whereas, in [4], they show
that (1) is unstable on the sphere S2 for 0 < σ < 1

4 . In fact they construct
solutions of (1) of the form

(3) uκn(t, x) = κeiλ
κ
nt(n

1
4−σψn(x) + rn(t, x)),
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where 0 < κ < 1, ψn = (x1 + ix2)n is a spherical harmonic which concentrates
on the equator of the sphere when n −→ +∞ and where rn is an error term
which is small. To obtain instability, they consider κn −→ κ, then

‖uκn(0)− uκnn (0)‖Hσ(S2) . |κ− κn| −→ 0,

but

‖uκn(tn)− uκnn (tn)‖Hσ(S2) & κ|eiλ
κ
ntn − eiλ

κn
n tn | −→ 2κ,

with a suitable choice of tn −→ 0.
We follow this strategy but as the surface is not rotation invariant, the ansatz
will be more complicated than (3).
This result is sharp, because in [6] they show that (1) is uniformly well-posed
on S2 when σ > 1

4 .
On the other hand, in [3] J. Bourgain shows that (1) is uniformly well-posed
on the rational torus T2 when σ > 0.
These results show how the geometry of M can lead to instability for the
equation (1). Therefore it seems reasonable to obtain a result like Proposition
1.3 with purely geometric assumptions.

We first make the following assumption on M :

Assumption 1. — The manifold M has a periodic geodesic.

Denote by γ such a geodesic, then there exists a system of coordinates (s, r)

near γ, say for (s, r) ∈ S1×] − r0, r0[, called Fermi coordinates such that (see
[13], p. 80)

1. The curve r = 0 is the geodesic γ parametrized by arclength and
2. The curves s = constant are geodesics parametrized by arclength. The

curves r = constant meet these curves perpendicularly.
3. In this system the metric writes

g =

(
1 0

0 a2(s, r)

)
.

We set the length of γ equal to 2π. Denote by R(s, r) the Gauss curvature at
(s, r), then a is the unique solution of

(4)


∂2a

∂r2
+R(s, r)a = 0,

a(s, 0) = 1,
∂a

∂r
(s, 0) = 0.
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The initial conditions traduce the fact that the curve r = 0 is a unit-speed
geodesic. In these coordinates the Laplace-Beltrami operator is

∆ :=
1√
detg

div(
√

detg g−1∇) =
1

a
∂s(

1

a
∂s) +

1

a
∂r(a∂r).

A function on M , defined locally near γ, can be identified with a function of
[0, 2π]×]− r0, r0[ such that

∀(s, r) ∈ [0, 2π]×]− r0, r0[ f(s+ 2π, r) = f(s, ωr)

where ω = 1 if M is orientable and ω = −1 if M is not. Define

(5) ω1 =
1

2
(ω − 1) ∈ {−1, 0}.

From (4) we deduce that a admits the Taylor expansion

(6) a = 1− 1

2
R(s)r2 +R3(s)r3 + · · ·+Rp(s)r

p + o(rp),

with R(s) = R(s, 0) and

(7) Rk(s) =
1

k!

∂ka

∂rk
(s, 0),

for k ≥ 3.
As a(s + 2π, r) = a(s, ωr), we deduce R(s + 2π) = R(s) and for all j ≥ 3,
Rj(s+ 2π) = ωjRj(s).
Let p2 = 1

a2σ
2 + ρ2 be the principal symbol of ∆, and

(8)



d

dt
s(t) =

∂p2

∂σ
=

2σ

a2
,

d

dt
σ(t) = −∂p2

∂s
= −∂s(

1

a2
)σ2,

d

dt
r(t) =

∂p2

∂ρ
= 2ρ,

d

dt
ρ(t) = −∂p2

∂r
= −∂r(

1

a2
)σ2,

s(0) = s0, σ(0) = σ0, r(0) = r0, ρ(0) = ρ0,

its associated hamiltonian system, where p2 = p2(s(t), r(t), σ(t), ρ(t)). The
system (8) admits a unique solution and defines the hamiltonian flow

Φt : (s0, σ0, r0, ρ0) 7−→ (s(t), σ(t), r(t), ρ(t)).

The curve Γ = {(s(t) = t, σ(t) = 1/2, r(t) = 0, ρ(t) = 0), t ∈ [0, 2π]} is solution
of (8) and its projection in the (s, r) space is the curve γ. Now denote by φ
the Poincaré map associated to the trajectory Γ and to the hyperplane Σ =

{s = 0}. There exists a neighborhood N of (σ = 1/2, r = 0, ρ = 0) such
that the following makes sense: solve the system (8) with the initial conditions
(0, σ0, r0, ρ0) ∈ {0} × N and let T be such that s(T ) = 2π, then φ is the
application

φ : (r0, ρ0) 7−→ (r(T ), ρ(T )).
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