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ON A THEOREM OF SAEKI CONCERNING
CONVOLUTION SQUARES OF SINGULAR MEASURES

by Thomas Körner

Abstract. — If 1 > α > 1/2, then there exists a probability measure µ such that
the Hausdorff dimension of the support of µ is α and µ ∗ µ is a Lipschitz function of
class α− 1

2
.

Résumé (Carrés de convolution des mesures singulières). — Si 1 > α > 1/2, alors
il existe une mesure de probabilité µ avec support de dimension d’Hausdorff α tel que
µ ∗ µ est une fonction Lipschitz de classe α− 1

2
.

1. Introduction

We work on on the circle T = R/Z. We write τ for the Lebesgue measure
on T and |E| = τ(E). We say that a function f : T→ C is Lipschitz β if

sup
t∈T

sup
h6=0
|h|−β |f(t+ h)− f(t)| <∞

for some 1 ≥ β > 0.
In a famous paper [11], Wiener and Wintner constructed a singular measure

µ such that µ ∗ µ ∈ Lp(T ) for all p ≥ 1 and other authors have given further
examples along these lines (see Chapter 6 of [2] and [4]). The strongest result is
due to Saeki [10] who constructs a singular measure µ with support of Lebesgue
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measure zero such that µ ∗µ = fτ where f has a uniformly convergent Fourier
series. He also remarks that this can be improved to give µ ∗ µ = fτ with f
Lipschitz β provided that β < 1/2, but leaves the proof as an exercise to the
reader. This paper may be considered as an extension to that exercise, although
I believe that the results obtained are more precise and that the method used
is not that envisaged by Saeki.

The object of this paper is to prove the following theorem.

Theorem 1. — If 1 > α > 1/2, then there exists a probability measure µ such
that the Hausdorff dimension of the support of µ is α and µ ∗ µ = fτ where f
is Lipschitz α− 1

2 .

At the two extremes α = 1 and α = 1/2 we get the following versions of
Theorem 1.

Theorem 2. — There exists a probability measure µ such that the support of
µ has Lebesgue measure 0 and µ∗µ = fτ where f is Lipschitz β for all β < 1/2.

Theorem 3. — There exists a probability measure µ such that the Hausdorff
dimension of the support of µ is 1/2 and µ∗µ = fτ where f is continuous with
uniformly convergent Fourier series.

We shall see, in Corollary 23, how to show that all these results remain true
if we replace T by R. We note a consequence of Corollary 23 here.

Lemma 4. — Suppose G : R→ R is a positive continuous function of bounded
support. Then, given any ε > 0, we can find a positive measure σ with support
of Lebesgue measure zero such that σ ∗ σ = FτR where τR is Lebesgue measure
and F is continuous with ‖F −G ∗G‖∞ < ε.

This indicates that the any numerical method for finding the approximate
‘convolution square root’ must overcome substantial difficulties.

The next lemma shows that, at the relatively coarse level of Hausdorff di-
mension and Lipschitz coefficients, these results must be close to best possible.

Lemma 5. — (i) If µ is a measure whose support has Hausdorff dimension α
and µ ∗ µ = fτ where f is Lipschitz β, then α− 1

2 ≥ β.
(ii) If µ is a measure whose support has Hausdorff dimension α and µ ∗µ =

fτ where f is continuous, then α ≥ 1
2 .
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Proof. — (i) Since f is Lipschitz β, it follows that (see, for example, [1] Chap-
ter II §3) ∑

n≤|k|≤2n−1

|f̂(k)| ≤ C1n
(1−2β)/2

for some constant C1 depending on f . Since |f̂(k)| = |µ̂(k)|2, we have∑
n≤|k|≤2n−1

|µ̂(k)|2 ≤ C1n
(1−2β)/2

and so, if η > 0,
2n−1∑
k=n

|µ̂(k)|2

|k|1−η
≤ C2n

−(1+2β−2η)/2

for all n ≥ 1 and some constant C2. By Cauchy’s condensation test,∑
k 6=0

|µ̂(k)|2

|k|1−η
converges

whenever (1 + 2β)/2 > η.
We know (by Theorems I and V of Chapter 3 in [7]), that if σ is a non-zero

measure with ∑
k 6=0

|σ̂(k)|2

|k|1−η
convergent

for some 0 < η < 1, it follows that the Hausdorff dimension of suppµ must be
at least η. Thus the Hausdorff dimension of suppµ must be at least η for each
η with (1 + 2β)/2 > η. We conclude that the Hausdorff dimension of suppµ

must be at least (1 + 2β)/2.
(ii) This follows the proof of (i) with β = 0.

Our method of proof gives two slightly stronger versions of the theorems
announced above which we state as Theorems 7 and 8. We need a preliminary
pair of definitions.

Definition 6. — Suppose that ψ : R→ R+ is a strictly increasing continuous
function with ψ(0) = 0.

(i) We say that a set E ⊆ T has Hausdorff ψ measure zero if, given ε > 0,
we can find a countable collection I of closed intervals such that⋃

I∈I
I ⊇ E and

∑
I∈I

ψ(|I|) < ε.

(ii) We say that function f : T→ C lies in Λψ if

sup
t,h∈T,h 6=0

ψ(|h|)−1|f(t+ h)− f(t)| <∞.
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Theorem 7. — Let 1 > α ≥ 1/2. Suppose that ψ : R → R+ is a strictly
increasing continuous function with ψ(0) = 0 and t−βψ(t) → 0 as t → 0+

whenever β < α − 1
2 . Then there exists a probability measure µ such that the

Hausdorff dimension of the support of µ is α and µ ∗ µ = fτ with f ∈ Λψ.

If 1 > α > 1/2 and ψ(t) = tα−1/2, we recover Theorem 1. If α = 1/2 and
ψ(t) = (log t−1)−2 for 0 < t < 1/2, we recover Theorem 3 since the Dini–
Lipschitz test tells us that any function in Λψ must have uniformly convergent
Fourier series. (See, for example, [1] Chapter IV §4.)

Theorem 8. — Let 1 ≥ α > 1/2. Suppose that ψ : R → R+ is a strictly
increasing continuous function with ψ(0) = 0 and t−βψ(t) → 0 as t → 0+

whenever β < α − 1
2 . Then there exists a probability measure µ such that

suppµ has Hausdorff ψ measure zero and µ ∗µ = fτ with f Lipschitz β for all
β < α− 1

2 .

If α = 1 and ψ(t) = t, we recover Theorem 2.
Section 2 is devoted to the proof of the key Lemma 9. The proof is probabilis-

tic and, as in several other papers, I acknowledge the influence of Kaufman’s
elegant note [8]. In the Section 3 we smooth the result of Lemma 9 to obtain
Lemma 17 which we later use in Section 5 to prove a Baire category version
of Theorem 7. In the final section we sketch the very similar proof of a Baire
category version of Theorem 8.

In my opinion, the main ideas of the paper are to be found in the proofs of
Lemmas 10 and 26.

2. The basic construction

The key to our construction is the following lemma.

Lemma 9. — Suppose φ : N→ R is a sequence with φ(n)→∞ as n→∞. If
1 > γ > 0 and ε > 0, there exist an M(γ) and n0(φ, γ, ε) ≥ 1 with the following
property. If n ≥ n0(φ, γ, ε), n is odd and nγ ≥ N we can find N points

xj ∈ {r/n : r ∈ Z}

(not necessarily distinct) such that, writing

µ = N−1
N∑
j=1

δxj
,

we have

|µ ∗ µ({k/n})− n−1| ≤ εφ(n)(log n)1/2

Nn1/2
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