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ALGEBRAIC SUBGROUPS

by Philipp Habegger

Abstract. — Generalizing a result of Bombieri, Masser, and Zannier we show that
on a curve in the algebraic torus which is not contained in any proper coset only finitely
many points are close to an algebraic subgroup of codimension at least 2. The notion
of close is defined using the Weil height. We also deduce some cardinality bounds and
further finiteness statements.

Résumé (Une propriété de Bogomolov pour des courbes modulo des sous-groupes al-
gébriques)

En généralisant un résultat de Bombieri, Masser, et Zannier on montre qu’une
courbe plongée dans le tore algébrique qui n’est pas contenue dans un translaté d’un
sous-groupe algébrique strict n’a qu’un nombre fini de points proches d’un sous-groupe
algébrique de codimension au moins 2. La notion de proximité est définie en utilisant
la hauteur de Weil. On déduit également des bornes pour la cardinalité et d’autres
énoncés de finitude.

1. Introduction

Let X be an irreducible algebraic curve embedded in the algebraic torus Gn
m

and defined over Q, an algebraic closure of Q. Bombieri, Masser, and Zannier
[5] showed that if X is not contained in the translate of a proper algebraic
subgroup, then only finitely many points in X are contained in an algebraic
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subgroup of Gn
m of dimension n − 2. The subgroup dimension n − 2 is best-

possible. Their result is related to several general conjectures stated in the
mean time by those three authors [7], Pink [19], and Zilber [27].

In this paper we show that only finitely many points in X are close to an
algebraic subgroup of dimension n−2, where the notion of close is defined with
respect to the Weil height. We also give some finiteness results and cardinality
bounds for higher dimensional varieties.

All varieties in this paper are defined over Q and will be identified with
their set of algebraic points. By irreducible we will always mean geometrically
irreducible. For brevity we call the translate of an algebraic subgroup of Gn

m

a coset and the translate of an algebraic subgroup of Gn
m by a torsion point a

torsion coset. For an integer m with 0 ≤ m ≤ n we define Hm to be the set of
points in Gn

m that are contained in an algebraic subgroup of dimension at most
m; if m < 0 we set Hm = ∅. With this notation and with X as in the first
paragraph, Bombieri, Masser, and Zannier’s Theorem states that X ∩Hn−2 is
finite.

Let h(·) denote the absolute logarithmic Weil height on Gn
m; the precise

definition is given in section 2. This height has the important property, usually
called Kronecker’s Theorem, that it vanishes precisely on the torsion points of
Gn
m. For any subset H ⊂ Gn

m and any ε ∈ R we define the “truncated cone”
around H as

C(H, ε) = {ab; a ∈ H, b ∈ Gn
m, h(b) ≤ ε(1 + h(a))}.

Kronecker’s Theorem implies C(Hm, 0) = Hm.
This definition showed up in the work of Evertse [12]. A special case of his

Theorem 5(i) implies that if X ⊂ Gn
m is an irreducible curve not equal to a

coset and if Γ is the division closure of a finitely generated subgroup of Gn
m,

then X ∩ C(Γ, ε) is finite for ε > 0 small enough. Actually Evertse proved a
result for X of any dimension. Earlier, Poonen [20] proved a related result in
the context of semi-abelian varieties which was then generalized by Rémond
[21]. We will study the intersection of subvarieties of Gn

m with C(Hm, ε) for
small ε > 0.

Theorem 1.1. — Let X ⊂ Gn
m be an irreducible closed algebraic curve defined

over Q. If X is not contained in a proper coset there exists ε > 0 effective and
depending only on h(X), deg(X), and n such that X∩C(Hn−2, ε) is finite with
cardinality bounded effectively in terms of h(X), deg(X), and n.

A quite explicit bound for the cardinality is given by (61).
The height h(X) of any irreducible subvariety X of Gn

m used in this article is
the height hι|X defined by Philippon on page 346 [18] where ι is the embedding
of Gn

m into projective space Pn defined in section 2. This height was also used
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by the author in [15]. The definition of deg(X), the degree of X, is recalled in
section 2.

Theorem 1.1 generalizes Bombieri, Masser, and Zannier’s Theorem and also
generalizes the Bogomolov property for our curve X. The Bogomolov property
(for curves in Gn

m) actually holds more generally and states that if an irreducible
curve in Gn

m is not a torsion coset, then all but finitely many points on this
curve have height bounded below by a positive constant. In Theorem 6.2, Zhang
[26] proved this and also a higher dimensional analogue. If n = 2, Theorem
1.1 actually follows from the Bogomolov property since C(H0, ε) is precisely
the set of points in Gn

m with height ≤ ε. Theorem 1.1 can be viewed as a sort
of Bogomolov property for curves modulo subgroups of dimension n − 2. We
remark that no new proof of the Bogomolov property is given in this article
since Theorem 1.1 itself depends on a quantitative version of this property by
Amoroso and David [3].

Theorem 1.1 is proved in two steps. First, we apply a Theorem proved by
the author [15], see Theorem 7.1 further down, which uniformly bounds the
height of points in the intersection X ∩ C(Hn−1, ε) if ε > 0 is small enough.
The second step, done below in Theorem 1.2, consists in showing that a subset
of X∩C(Hn−2, ε) of bounded height is finite if ε > 0 is small enough. Theorem
1.1 follows since we already know that X ∩ C(Hn−2, ε) ⊂ X ∩ C(Hn−1, ε) has
bounded height for small ε.

In Theorem 1.2 below we prove a finiteness statement which holds not only
for curves but for any irreducible closed subvariety X ⊂ Gn

m. This is the main
technical result of the article, but before we state it we need some definitions.

The set Xoa is obtained by removing from X all anomalous subvarieties and
Xta is obtained by removing from X all torsion-anomalous subvarieties; see
section 2 for the definition of anomalous and torsion-anomalous subvarieties.
The sets Xoa and Xta were defined by Bombieri, Masser, and Zannier [7] who
showed that Xoa is Zariski open in X.

For r and n real numbers with 1 ≤ r ≤ n, we define

(1) m(r, n) = n− 2r + 2−d(r(d+ 2)− n) with d =

ï
n− 1

r

ò
,

here [x] denotes the greatest integer less or equal to x.

Theorem 1.2. — Let X ⊂ Gn
m be an irreducible closed subvariety of dimen-

sion r ≥ 1 defined over Q. Let B ≥ 1 and let m be an integer with m < m(r, n).
(i) If X is not contained in a proper coset there exists ε > 0 effective and

depending only on B, deg(X), and n such that

{p ∈ X ∩ C(Hm, ε);h(p) ≤ B}

is not Zariski dense in X.
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(ii) For unrestricted X let ∆ = (Brdeg(X))(n+6)4r2nr . There exists c(n) > 0

effective and depending only on n such that if ε ≤ (c(n)∆)−1 then

{p ∈ Xoa ∩ C(Hm, ε);h(p) ≤ B}

is finite of cardinality at most c(n)∆.

A possible choice for ε in part (i) is the right-hand side of (48) with s replaced
by n. We by no means claim that the hypothesis on ε or the cardinality bound
in part (ii) are best-possible with respect to any of the involved quantities like
B or deg(X). We do remark that ∆ and c(n) are independent of a field of
definition or height of X. This uniformity can be used to obtain the following
uniform cardinality bound for a simple family of curves:

Corollary 1.3. — Let τ ∈ Q and let Xτ ⊂ G3
m be the curve defined by

(x+1, x+τ, x−τ) where x 6= −1,±τ . There exist ε > 0 and an integer N such
that Xτ∩C(H1, ε) is finite with cardinality bounded by N for all τ ∈ Q\{0,±1}.

Although the corollary could possibly be generalized to more complicated
families of curves, our method cannot handle other simple examples such as
(x, x− 1, x− τ).

Corollary 1.3 motivates the following two questions. In Theorem 1.1, can
ε be chosen depending only on deg(X) and n? In the same theorem, can the
cardinality be bounded in function only of deg(X) and n?

By definition we have m(1, n) = n− 2 + 2−(n−1) > n− 2 and thus Theorem
1.2 is optimal with respect to the subgroup dimension if X is a curve. But it is
likely that the somewhat unnatural function m(r, n) does not lead to optimal
results if 2 ≤ r ≤ n− 2. In fact we conjecture that Theorem 1.2(i) holds with
m(r, n) replaced by n− r. If 1 ≤ r ≤ n and if d is as in (1), then d > n−1

r − 1,
hence r(d+ 2) > n− 1 + r. We conclude m(r, n) > n− 2r. Therefore one may
always takem = n−2r in Theorem 1.2. Of course this choice is only interesting
if r ≤ n/2. Further down, in Lemma 6.2 we will see that m(r, n) ≥ (n − r)/2
holds for all 1 ≤ r ≤ n− 1.

Statements related to the ones in Theorem 1.2 were known earlier with ε = 0.
Work was done in the multiplicative case by Bombieri, Masser, and Zannier
(Lemma 8.1 [8]) and in the abelian case by Rémond (Theorem 2.1 [22]). For
example by Lemma 8.1 [8] the set of p ∈ Xta ∩ Hn−r−1 with h(p) ≤ B is
finite. In this result the subgroup dimension n − r − 1 is best-possible for
any r and finiteness is obtained for Xta instead of the possibly smaller Xoa.
These earlier finiteness results involved Lehmer-type height lower bounds. In
the multiplicative case such a bound gives a positive lower bound for h(p) if
p ∈ Gn

m is not contained in any proper algebraic subgroup of Gn
m. Typical
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