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by Rodolphe Garbit

Abstract. — We prove that a planar random walk with bounded increments and
mean zero which is conditioned to stay in a cone converges weakly to the corresponding
Brownian meander if and only if the tail distribution of the exit time from the cone is
regularly varying. This condition is satisfied in many natural examples.

Résumé (Un théorème limite central pour des marches aléatoires dans des cônes du
plan)

Nous démontrons qu’une marche aléatoire dans le plan, centrée, à accroissements
bornés, et conditionnée à rester dans un cône, converge en loi vers le méandre brownien
correspondant si et seulement si la queue de la loi du temps de sortie du cône est à
variation régulière. Cette condition est satisfaite dans de nombreux exemples naturels.

1. Introduction

1.1. Main result. — The aim of this paper is to underscore a natural necessary
and sufficient condition for the weak convergence of a two-dimensional random
walk conditioned to stay in a cone to the corresponding Brownian meander.
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272 R. GARBIT

The condition only involves the asymptotic behavior of the tail distribution of
the first exit time from the cone.

Let (ξn)n≥1 be a sequence of independent and identically distributed random
vectors of Rd, d ≥ 1, defined on a probability space (Ω, F ,P). We assume that
the distribution of ξ1 satisfies E(ξ1) = 0 and Cov(ξ1) = σ2Id, where σ2 > 0

and Id is the d× d identity matrix.
We form the random walk S = (Sn)n≥1 by setting Sn = ξ1 + · · · + ξn, and

for each n ≥ 1, we define a normed and linearly interpolated version of S by

Sn(t) =
S[nt]

σ
√
n

+ (nt− [nt])
ξ[nt]+1

σ
√
n
, t ≥ 0,

where [a] denotes the integer part of a.
The weak convergence of the process Sn = ( Sn(t), t ≥ 0) as n → ∞ to

a standard Brownian motion is Donsker’s theorem (see for example Theorem
10.1 of [1]).

We consider a linear cone C ⊂ Rd (i.e. λC = C for every λ > 0) with the
following properties:

1. C is convex,
2. its interior Co is non-empty,
3. P(ξ1 ∈ C \ {0}) > 0.

Such a cone is said to be adapted to the random walk. Note that the convexity of
C ensures that its boundary ∂C is negligible with respect to Lebesgue measure
(see for example [8]). The third condition ensures that the first step of the
random walk is in C with positive probability. Since a convex cone is a semi-
group, the event {ξ1, . . . , ξn ∈ C} is a subset of {S1, . . . , Sn ∈ C}, so the latter
has also a positive probability. For this purpose, one could simply require that
P(ξ1 ∈ C) > 0, but our third condition also excludes the uninteresting cases
where {S1, S2, . . . , Sn ∈ C} = {S1 = S2 = · · · = Sn = 0} almost surely.

We consider the first exit time of the random walk from the cone defined by

TC = inf{n ≥ 1 : Sn /∈ C},

and wish to investigate the asymptotic distribution of (S1, . . . , Sn) conditional
on {TC > n} as n→∞.

We denote by C1 the space of all continuous functions w : [0, 1] → Rd,
endowed with the topology of the uniform convergence and the corresponding
Borel σ-algebra. Weak convergence of probability measures on C1 will be
denoted by the symbol ⇒.

Let Qn denote the distribution on C1 of the process Sn conditional on
{TC > n}, that is, for any Borel set B of C1,

Qn(B) = P( Sn ∈ B|TC > n).
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Note that, since C is a convex cone, this is equivalent to conditioning Sn on
{τC( Sn) > 1}, where

τC(w) = inf{t > 0 : w(t) /∈ C}, w ∈ C1.

We are interested in the weak convergence of the sequence of conditional
distributions (Qn). The one-dimensional case, where C = [0,∞), has been
investigated in the 60’s and the 70’s by many authors. It was Spitzer [11] who
first announced a central limit theorem for the random walk conditioned to
stay positive:

Qn(w(1) ≤ x)→ 1− exp(−x2/2), x ≥ 0.

But, apparently, he never published the proof. Note that the limit is the
Rayleigh distribution. A first proof of the weak convergence of Qn was given
by Iglehart in [7] under the assumptions E(|ξi|3) <∞ and ξi nonlattice or inte-
ger valued with span 1. The limit is found to be the distribution of Brownian
meander. Then Bolthausen proved in [3] that these extra assumptions were
superfluous. For the reader who may not be familiar with the Brownian me-
ander, we will use a theorem of Durrett, Iglehart and Miller [4] as a definition.
Let W x be the distribution of the standard Brownian motion started at x. For
any x > 0, we denote by Mx the distribution W x conditional on {τC > 1},
that is

Mx(B) = W x(B|τC > 1)

for any Borel set B of C1. Here, the definition of conditional probabilities is
elementary since W x(τC > 1) is positive for all x > 0. The distribution M of
Brownian meander is the weak limit of Mx as x→ 0+ (see [4], Theorem 2.1).
Note that the existence of a limit is not straightforward since W 0(τC > 1) = 0.
But in a sense, the Brownian meander is a Brownian motion started at 0 and
conditioned to stay positive for a unit of time. The Brownian meander can
alternatively be obtained by some path transformations of Brownian motion.
Namely, it is the first positive excursion of Brownian motion with a lifetime
greater than 1; it is also the absolute value of the rescaled section of Brownian
motion observed on the interval [h, 1], where h is its last zero before t = 1

(see [3] and [4]).
With this in mind, the weak convergence of Qn to M can be stated in the

following imprecise but intuitive way: the random walk conditioned to stay
positive converges to a Brownian motion conditioned to stay positive.

We now turn to the two-dimensional case. If Qn does converge weakly, then
its limit should naturally be the distribution of a Brownian motion conditioned
to stay in the cone C for a unit of time. Such a process can be defined as
the weak limit of conditioned Brownian motion in the same way as Brownian
meander. As above, for x ∈ Co, letMx be the distribution of Brownian motion
started at x and conditioned to stay in C for a unit of time. The following
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theorem is due to Shimura [9] and has been extended in [6] to any dimension
d ≥ 2 for smooth cones.

Theorem 1.1 ([9], Theorem 2). — As x ∈ Co → 0, the distribution Mx con-
verges weakly to a limit M .

The limit distribution M in this theorem will be referred to as the distribu-
tion of the Brownian meander (of the cone C). We will give more details about
M in Section 2.

We now come to the main result of the present paper. We recall that a
sequence (un) of positive numbers is regularly varying if it can be written as
un = n−αln, where α ∈ R and (ln) is slowly varying, i.e. limn l[nt]/ln = 1 for
all t > 0 (see for example [2]). The exponent α is unique and called the index
of regular variation. A non-increasing sequence of positive numbers (un) will
be called dominatedly varying(1) if lim supn u[nt]/un is finite for all t ∈ (0, 1].

Theorem 1.2. — Assume that the two-dimensional random walk has bounded
increments. Then, the sequence of conditional distributions (Qn) converges
weakly to the Brownian meander if and only if P(TC > n) is dominatedly
varying. In that case, P(TC > n) is regularly varying with index π/(2β), where
β is the angle of the cone.

The assumption of bounded increments is only used in the proof of the
tightness of (Qn) which is taken from the paper [10] of Shimura. We will
discuss some extensions to the case where the increments are not bounded in
Section 3.1. However, the rest of the proof of Theorem 1.2, which consists
in a study of the (eventual) limit points of the sequence (Qn), is completely
independant of the assumption of bounded increments. Thus, we could have
stated a more general (but not very useful) theorem by simply assuming that
(Qn) is tight. In order to avoid any confusion, the reader is advised that in any
of the lemmas, propositions or theorems of this paper, the random walk (Sn)

is not assumed to have bounded increments unless it is written explicitly.
Our Theorem 1.2 can be regarded as an extension of a previous result due to

Shimura ([10], Theorem 1). Indeed, he proved that Qn ⇒M if the distribution
of the increments satisfies the following condition: there exists an orthogonal
basis {~u,~v} of R2 with ~v ∈ Co such that E(V |U) = 0, where (U, V ) denotes
the coordinates of ξ1 in the new basis. But this condition does not seem to be

(1) This is strictly weaker than regular variation. For example, since
∏

n
(1+1/n) is divergent,

it is possible to construct a sequence of numbers 1 ≤ cn ≤ 2 such that :(i) for all n ≥ 1,
cn+1 ≤ (1 + 1/n)cn, and (ii) for all ε > 0, there exist infinitely many n such that cn ≥ 2− ε
and cn+1 = 1. Then, the sequence un = cn/n is non-increasing and dominatedly varying, but
not regularly varying since lim inf un+1/un ≤ 1/2 is not equal to 1 as it should be (see [13]
for a very nice proof of this).
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