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HILBERT SCHEMES AND STABLE PAIRS:
GIT AND DERIVED CATEGORY WALL CROSSINGS

by Jacopo Stoppa & Richard P. Thomas

Abstract. — We show that the Hilbert scheme of curves and Le Potier’s moduli
space of stable pairs with one dimensional support have a common GIT construction.
The two spaces correspond to chambers on either side of a wall in the space of GIT
linearisations.

We explain why this is not enough to prove the “DT/PT wall crossing conjecture”
relating the invariants derived from these moduli spaces when the underlying variety
is a 3-fold. We then give a gentle introduction to a small part of Joyce’s theory for
such wall crossings, and use it to give a short proof of an identity relating the Euler
characteristics of these moduli spaces.

When the 3-fold is Calabi-Yau the identity is the Euler-characteristic analogue of
the DT/PT wall crossing conjecture, but for general 3-folds it is something different,
as we discuss.

Résumé (Schémas de Hilbert et paires stables : GIT et croisements de murs de caté-
gories dérivées)

Nous montrons que le schéma de Hilbert de courbes et l’espace de modules de
Le Potier de paires stables à support à une dimension, ont une construction GIT
commune. Les deux espaces correspondents aux chambres de par et d’autre d’un mur
dans l’espace de linéarisations GIT.

Nous expliquons pourquoi cela ne suffit pas pour prouver la « conjecture de croi-
sement de murs DT/PT » qui relie les invariants dérivés de ces espaces de modules
quand la variété sous-jacente est un 3-fold. Nous donnons, ensuite, une introduction
simple à une petite partie de la théorie de Joyce sur les croisements de murs de ce type,
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et nous nous en servons pour donner une brève démonstration d’une identité reliant
les caractéristiques d’Euler de ces espaces de modules.

Quand le 3-fold est de type Calabi-Yau, l’identité est le pendant, pour la carac-
téristique d’Euler, de la conjecture de croisement de murs DT/PT, mais dans le cas
général elle s’avère être différente de celle-ci, comme nous l’expliquons.

1. Introduction

This paper is motivated by the conjectural equivalence between two curve
counting theories on smooth complex projective threefolds X: the one studied
in [17] and the stable pairs of [21].

MNOP and stable pairs invariants are sheaf-theoretic analogues of Gromov-
Witten invariants, sometimes called DT and PT invariants respectively. The
space of stable maps to X is replaced by suitable moduli spaces of sheaves
supported on curves in X.

Fix β ∈ H2(X,Z) and n ∈ Z. In MNOP theory we integrate suitable
classes against the virtual fundamental class of the Hilbert scheme In(X,β) of
subschemes Z of X in the class [Z] = β with holomorphic Euler characteristic
χ( OZ) = n. The virtual fundamental class comes from thinking of In(X,β) as
a moduli space of sheaves of trivial determinant – namely the ideal sheaves IZ

with Chern character

(1.1)
(

1, 0,−β,−n+
β.c1(X)

2

)
∈ H0(X)⊕H2(X)⊕H4(X)⊕H6(X).

For stable pair theory we work instead with stable pairs (F, s): F is a pure
sheaf on X with Chern character (0, 0, β,−n+ β.c1(X)/2), and s : OX → F is
a section with 0-dimensional cokernel. A special case of the work of Le Potier
[14] constructs the fine moduli space Pn(X,β) as a projective scheme. The
virtual fundamental class comes from thinking [21] of Pn(X,β) as a moduli
space of objects of the derived category of coherent sheaves on X (with trivial
determinant) – namely the complexes I• := { OX → F} with Chern character
(1.1).

Roughly speaking, we think of In(X,β) as parameterising pure curves plus
points (free and embedded) on X. Any Z ∈ In(X,β) contains a maximal
Cohen-Macaulay curve C ⊆ Z (the pure curve: recall that Cohen-Macaulay
means no embedded points) such that the kernel of OZ → OC is 0-dimensional
(the points). Equally loosely we think of stable pairs as parameterising Cohen-
Macaulay curves (the support of the sheaf F ) and free points on the curve (the
cokernel of the section s).

Over the Zariski-open subset of Cohen-Macaulay curves C with no free or
embedded points, the moduli spaces In(X,β) and Pn(X,β) are isomorphic: the
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stable pair OX → OC determines and is determined by the kernel ideal sheaf
IC . Indeed I• is quasi-isomorphic to IC .

When ωX ∼= OX , i.e. X is a Calabi-Yau threefold, MNOP and stable pair
invariants take a particularly simple form. Then the virtual dimension is zero
and we get invariants by taking the length of the 0-dimensional virtual cycle:

Ivir
m,β

=

∫
[Im(X,β)]vir

1,

and
P vir
m,β

=

∫
[Pm(X,β)]vir

1.

In this case the deformation-obstruction theories [24, 21, 9] used to define
the virtual cycles are self dual in the sense of [2]. This implies that Ivir

m,β , P
vir
m,β

are in fact weighted Euler characteristics:

Ivir
m,β = e(Im(X,β), χB), P vir

m,β = e(Pm(X,β), χB).

Here the weighting function is Behrend’s integer-valued constructible function
χB [2], which assigns to each point of the moduli space the multiplicity with
which it contributes to the invariants. At smooth points of the moduli space,
χB ≡ (−1)dim.

We can also form their generating series

ZI,vir
β (X)(t) :=

∑
m∈Z

Ivir
m,βt

m and ZP,vir
β (X)(t) :=

∑
m∈Z

P vir
m,βt

m.

The conjectural equivalence between the MNOP and stable pair invariants in
the Calabi-Yau case is then the following.

Conjecture 1.2. — [21] For X a Calabi-Yau threefold,

ZP,vir
β (X) =

ZI,vir
β (X)

ZI,vir
0 (X)

.

Equivalently, for each m ∈ Z we have the following identity (where the right
hand side is a finite sum):

(1.3) Ivir
m,β = P vir

m,β + Ivir
1,0 · P vir

m−1,β + Ivir
2,0 · P vir

m−2,β + · · · .

Here ZI,vir
0 (X) is the generating series of virtual counts of zero dimensional

subschemes of X. By [17, 3, 15, 16] it is in fact

ZI,vir
0 (X)(t) = M(−t)e(X),

where M(t) is the MacMahon function, the generating function for 3-
dimensional partitions.

Using Kontsevich-Soibelman’s identities for χB [13], now proved in some
cases [12], it should now be possible to extend what follows to the weighted
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Euler characteristics Ivir
m,β and P vir

m,β . But in this paper we content ourselves
with working with the unweighted Euler characteristics

Im,β := e(Im(X,β)) and Pm,β := e(Pm(X,β)),

which are not deformation invariant. Form their generating series

ZIβ(X)(t) :=
∑
m∈Z

Im,βt
m and ZPβ (X)(t) :=

∑
m∈Z

Pm,βt
m.

In Sections 4 and 5 we will give two different proofs of the following topological
analogue of Conjecture 1.2 (first proved by Toda [26] in the Calabi-Yau case,
as discussed below).

Theorem 1.4. — Let X be a smooth projective threefold. Then

ZPβ (X) =
ZIβ(X)

ZI0 (X)
.

Equivalently for each m ∈ Z we have the following identity (where the right
hand side is a finite sum):

Im,β = Pm,β + I1,0 · Pm−1,β + I2,0 · Pm−2,β + · · · .

Here the Ik,0 = e(HilbkX) are the Euler characteristics of the Hilbert
schemes of points on X, and ZI0 (X) is their generating series. By [5] this
is

ZI0 (X) = M(t)e(X).

In fact we prove a little more. Fixing a Cohen-Macaulay C in class β,
define In,C to be the Euler characteristic of the subset of In(X,β) consisting
of subschemes whose underlying Cohen-Macaulay curve is C (this is naturally
a projective scheme, see below). Similarly let Pn,C be the Euler characteristic
of the subset (in fact projective scheme) of Pn(X,β) of pairs supported on C.

Theorem 1.5. — Let C ⊂ X be a Cohen-Macaulay curve in a smooth projec-
tive threefold. Then

In,C = Pn,C + e(X)Pn−1,C + e(Hilb2X)Pn−2,C + · · ·+ e(HilbnX)P0,C .

We explain in Section 4.2 how to deduce Theorem 1.4 from this by “inte-
grating” over the space of Cohen-Macaulay curves C.

Naively one should think of the above identities as reflecting the decompo-
sition of In(X,β) into a union of the subset of pure Cohen-Macaulay curves
with no free or embedded points, the subset with one free or embedded point,
the subset with two points, etc. Birationally such a decomposition is given by
(1.6) below.
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