

COLEFF-HERRERA CURRENTS, DUALITY AND NOETHERIAN OPERATORS

Mats Andersson

Tome 139 Fascicule 4

2011

SOCIÉTÉ MATHÉMATIQUE DE FRANCE

Publié avec le concours du Centre national de la recherche scientifique pages 535-554 Bull. Soc. math. France 139 (4), 2011, p. 535-554

COLEFF-HERRERA CURRENTS, DUALITY, AND NOETHERIAN OPERATORS

BY MATS ANDERSSON

ABSTRACT. — Let \mathcal{I} be a coherent subsheaf of a locally free sheaf $\theta(E_0)$ and suppose that $\mathcal{T} = \mathcal{O}(E_0)/\mathcal{I}$ has pure codimension. Starting with a residue current R obtained from a locally free resolution of $\mathcal F$ we construct a vector-valued Coleff-Herrera current μ with support on the variety associated to \mathcal{F} such that ϕ is in \mathcal{I} if and only if $\mu\phi = 0$. Such a current μ can also be derived algebraically from a fundamental theorem of Roos about the bidualizing functor, and the relation between these two approaches is discussed. By a construction due to Björk one gets Noetherian operators for \mathcal{I} from the current μ . The current R also provides an explicit realization of the Dickenstein-Sessa decomposition and other related canonical isomorphisms.

RÉSUMÉ (Courants de Coleff-Herrera, dualité et opérateurs noethériens)

Soit \mathscr{I} un sous-faisceau cohérent d'un faisceau localement libre $\theta(E_0)$ et supposons que $\mathcal{F} = \mathcal{O}(E_0)/\mathcal{I}$ ait une codimension pure. En partant d'un courant résiduel R, obtenu à partir d'une résolution localement libre de \mathcal{F} , nous construisons un courant de Coleff-Herrera vectoriel μ à support sur la variété associée à \mathcal{T} , tel que ϕ soit dans \mathcal{I} si et seulement si $\mu\phi = 0$. Un tel courant μ peut également être dérivé algébriquement grâce à un théorème fondamental de Roos sur le foncteur bidualisant, et nous étudions le lien entre les deux approches. Par une construction due à Björk, on obtient des opérateurs noethériens pour \mathcal{I} à partir du courant μ . Le courant R nous fournit également une réalisation explicite de la décomposition de Dickenstein-Sessa, ainsi que d'autres isomorphismes canoniques afférents.

Texte reçu le 9 juillet 2009, révisé le 6 octobre 2010 et le 29 juin 2011.

ANDERSSON, Department of Mathematics, Chalmers University of Tech-Mats and \mathbf{the} University of Gothenburg, S-412 96 Göteborg, Sweden nology *E-mail* : matsa@math.chalmers.se

2000 Mathematics Subject Classification. — 32C30, 32A27.

Key words and phrases. — Coleff-Herrera current, duality, Noetherian operators, residue current.

The author was partially supported by the Swedish Natural Science Research Council.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE 0037-9484/2011/535/\$5.00 © Société Mathématique de France

1. Introduction

A function ϕ in the local ring Θ_0 in one complex variable belongs to the ideal I generated by z^m if and only if

$$\mathcal{L}_{\ell}\phi(0) = 0, \ \ell = 0, \dots, m-1,$$

where $\mathcal{L}_{\ell} = \partial^{\ell}/\partial z^{\ell}$. These conditions can be elegantly expressed by the single equation $\phi \bar{\partial} (1/z^m) = 0$, where $1/z^m$ is the usual principal value distribution. Moreover, the current $\mu = \bar{\partial} (1/z^m)$ is canonical up to a non-vanishing holomorphic factor. There is a well-known multivariable generalization. Let $f = (f^1, \ldots, f^p)$ be a tuple of holomorphic functions in a neighborhood of the origin in \mathbb{C}^n that defines a complete intersection, i.e., the codimension of $Z^f = \{f = 0\}$ is equal to p. Then the Coleff-Herrera product

$$\mu^f = \bar{\partial} \frac{1}{f^1} \wedge \dots \wedge \bar{\partial} \frac{1}{f^p},$$

introduced in [9], is a $\bar{\partial}$ -closed (0, p)-current with support on Z^f , and it is independent (up to a nonvanishing holomorphic factor) of the choice of generators of the ideal sheaf \mathscr{I} generated by f. It was proved in [10] and [17] that \mathscr{I} coincides with the ideal sheaf ann μ^f of holomorphic functions ϕ such that the current $\mu^f \phi$ vanishes. This is often referred to as the duality principle.

The Coleff-Herrera product is the model for a general Coleff-Herrera current introduced by Björk: Given a variety Z of pure codimension p we say that a (possibly vector-valued) (0, p)-current μ (with support on Z) is a Coleff-Herrera current on Z, $\mu \in \mathcal{CH}_Z$, if it is $\bar{\partial}$ -closed, annihilated by \mathcal{I}_Z (i.e., $\bar{\xi}\mu = 0$ for each holomorphic ξ that vanishes on Z), and has the standard extension property SEP. This means, roughly speaking, that μ has no "mass" concentrated on any subvariety of higher codimension; in particular that μ is determined by its values on Z_{req} , see, e.g., [7] or [3], and Section 2.1. The SEP implies that $\operatorname{ann} \mu$ has pure dimension, see, e.g., Proposition 5.3 in [5]. The condition $\overline{\mathscr{I}}_{Z}\mu = 0$ means that μ only involves holomorphic derivatives. Following Björk, see [7], one can quite easily find a finite number of holomorphic differential operators \mathcal{L}_{ℓ} such that $\phi \mu = 0$ if and only if $\mathcal{L}_{1}\phi = \cdots = \mathcal{L}_{\nu}\phi = 0$ on Z; i.e., a (complete) set of Noetherian operators for $\operatorname{ann} \mu$. In this paper we use the residue theory developed in [4] and [5] to extend the duality for a complete intersection to a general pure-dimensional ideal (or submodule of a locally free) sheaf. In particular we can express such an ideal as the annihilator of a finite set of Coleff-Herrera currents (Theorem 1.2 and its corollaries). Jan-Erik Björk has pointed out to us that one can deduce the same duality result from a fundamental theorem of Jan-Erik Roos, [18], about purity for a module in terms of the bidualizing sheaves, combined with some other known facts that will be described below. However our approach gives a representation of the

tome $139 - 2011 - n^{o} 4$

duality and the Coleff-Herrera currents in terms of one basic residue current, that we first describe.

To begin with, let \mathcal{I} be any coherent subsheaf of a locally free sheaf $\mathcal{O}(E_0)$ over a complex manifold X, and assume that

(1.1)
$$0 \to \mathcal{O}(E_N) \xrightarrow{f_N} \cdots \xrightarrow{f_3} \mathcal{O}(E_2) \xrightarrow{f_2} \mathcal{O}(E_1) \xrightarrow{f_1} \mathcal{O}(E_0)$$

is a locally free resolution of $\mathcal{F} = \mathcal{O}(E_0)/\mathcal{I}$. Here $\mathcal{O}(E_k)$ denotes the locally free sheaf associated to the vector bundle E_k over X. If X is Stein, then one can find such a resolution in a neighborhood of any given compact subset. We will assume that \mathcal{F} has codimension p > 0; cf., Remark 2. Then f_1 is (can be assumed to be) generically surjective, and the analytic set Z where it is not surjective has codimension p and coincides with the zero set of the ideal sheaf ann \mathcal{F} . In [4] we defined, given Hermitian metrics on E_k , a residue current $R = R_p + R_{p+1} + \cdots$ with support on Z, where R_k is a (0, k)-current that takes values in Hom (E_0, E_k) , such that a holomorphic section $\phi \in \mathcal{O}(E_0)$ is in \mathcal{I} if and only if $R\phi = 0$.

Recall that \mathcal{F} has *pure* codimension p if the associated prime ideals (of each stalk) all have codimension p. The starting point in this paper is the following result that follows from [5] (see also Section 7 below); as we will see later on it is in a way equivalent to Roos' characterization of purity.

THEOREM 1.1. — The sheaf $\mathcal{F} = \mathcal{O}(E_0)/\mathcal{J}$ has pure codimension p if and only if \mathcal{J} is equal to the annihilator of R_p , i.e.,

$$\mathscr{I} = \{ \phi \in \mathscr{O}(E_0); \ R_p \phi = 0 \}.$$

If \mathcal{F} is Cohen-Macaulay we can choose a resolution (1.1) with N = p, and then $R = R_p$ is a matrix of \mathcal{CH}_Z -currents which thus solves our problem. However, in general R_p is not $\bar{\partial}$ -closed even if \mathcal{F} has pure codimension. Let

$$(1.2) \qquad 0 \to \mathcal{O}(E_0^*) \xrightarrow{f_1^*} \mathcal{O}(E_1^*) \xrightarrow{f_2^*} \cdots \xrightarrow{f_{p-1}^*} \mathcal{O}(E_{p-1}^*) \xrightarrow{f_p^*} \mathcal{O}(E_p^*) \xrightarrow{f_{p+1}^*} \mathcal{O}(E_p^*) \xrightarrow{f_{p+1}^*}$$

be the dual complex of (1.1) and let

(1.3)
$$\mathcal{H}^{k}(\mathcal{O}(E_{\bullet}^{*})) = \frac{\operatorname{Ker}_{f_{k+1}^{*}}\mathcal{O}(E_{k}^{*})}{f_{k}^{*}\mathcal{O}(E_{k-1}^{*})}$$

be the associated cohomology sheaves. It turns out that for each choice of $\xi \in \mathcal{O}(E_p^*)$ such that $f_{p+1}^*\xi = 0$, the current ξR_p is in $\mathcal{CH}_Z(E_0^*)$, and we have in fact a bilinear (over \mathcal{O}) pairing

(1.4)
$$\mathcal{H}^p(\mathcal{O}(E^*_{\bullet})) \times \mathcal{F} \to \mathcal{CH}_Z, \quad (\xi, \phi) \mapsto \xi R_p \phi.$$

Moreover, (1.4) is independent of the choice of Hermitian metrics on E_k . It is well-known that the sheaves in (1.3) represent the intrinsic sheaves $\mathcal{E}_{\mathcal{H}}^k_{\mathcal{O}}(\mathcal{F}, \mathcal{O})$. (If Z does not have pure codimension p then we define $\mathcal{C}_{\mathcal{H}}_Z$ as $\mathcal{C}_{\mathcal{H}}_{Z'}$, where

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE

Z' is the union of irreducible components of codimension p; this is reasonable, in view of the SEP.)

THEOREM 1.2. — Assume that \mathcal{F} has codimension p > 0. The pairing (1.4) induces an intrinsic pairing

(1.5)
$$\operatorname{Ext}_{\theta}^{p}(\mathcal{F}, \theta) \times \mathcal{F} \to \operatorname{CH}_{Z}.$$

If \mathcal{F} has pure codimension, then the pairing is non-degenerate.

Notice that $\mathcal{H}om(\mathcal{F}, \mathcal{CH}_Z)$ is the subsheaf of $\mathcal{H}om(\mathcal{O}(E_0), \mathcal{CH}_Z) = \mathcal{CH}_Z(E_0^*)$ consisting of all Coleff-Herrera currents μ with values in E_0^* such that $\mu\phi = 0$ for all $\phi \in \mathcal{I}$. It follows that we have the equality

(1.6)
$$\mathcal{I} = \{ \phi \in \mathcal{O}(E_0); \ \mu \phi = 0 \text{ for all } \mu \in \mathcal{H}om \left(\mathcal{F}, \mathcal{CH}_Z\right) \}$$

if \mathcal{F} is pure. The sheaf $\mathcal{H}^p(\mathcal{O}(E^*_{\bullet}))$ is coherent and thus locally finitely generated. Therefore we have now a solution to our problem:

COROLLARY 1.3. — Assume that \mathcal{F} has pure codimension. If $\xi_1, \ldots, \xi_{\nu} \in \mathcal{O}(E_p^*)$ generate $\mathcal{H}^p(\mathcal{O}(E_{\bullet}^*))$, then $\mu_j = \xi_j R_p$ are in $\mathcal{H}om(\mathcal{F}, \mathcal{CH}_Z)$ and

(1.7)
$$\mathscr{I} = \bigcap_{j=1}^{\nu} \operatorname{ann} \mu_j.$$

REMARK 1. — If \mathscr{I} is not pure, one obtains a decomposition (1.7) after a preliminary decomposition $\mathscr{I} = \cap \mathscr{I}_{\nu}$, where each \mathscr{I}_{ν} has pure codimension. \Box

In case of a complete intersection, $\mathcal{Ext}^{p}(\mathcal{F}, \theta)$ is isomorphic to \mathcal{F} itself. If $\mathcal{F} = \mathcal{O}(E_0)/\mathcal{I}$ is a sheaf of Cohen-Macaulay modules there is also a certain symmetry: If (1.1) is a resolution with N = p, then it is well-known, cf., also Example 4 below, that the dual complex (1.2) is a resolution of $\mathcal{O}(E_p^*)/\mathcal{I}^*$, where $\mathcal{I}^* = f_p^* \mathcal{O}(E_{p-1}^*) \subset \mathcal{O}(E_p^*)$, and we have

COROLLARY 1.4. — If $\mathcal{O}(E_0)/\mathcal{J}$ is Cohen-Macaulay, then $\mathcal{O}(E_p^*)/\mathcal{J}^*$ is Cohen-Macaulay as well and we have a non-degenerate pairing

$$\mathcal{O}(E_0)/\mathcal{I} \times \mathcal{O}(E_p^*)/\mathcal{I}^* \to \mathcal{CH}_Z, \quad (\xi, \phi) \mapsto \xi R_p \phi.$$

REMARK 2. — Assume that \mathcal{F} has codimension p = 0, or equivalently, ann $\mathcal{F} = 0$. If it is pure, i.e., (0) is the only associated prime ideal, then there is a homomorphism $f_0: \mathcal{O}(E_0) \to \mathcal{O}(E_{-1})$ such that $\mathcal{I} = \operatorname{Ker} f_0$. It is natural to consider f_0 as a Coleff-Herrera current μ associated with the zero-codimensional "variety" X. Then $\mathcal{I} = \operatorname{ann} \mu$ and thus analogues of Theorem 1.1 and Corollary 1.3 still hold.

tome 139 – 2011 – $\rm n^o~4$