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DISTRIBUTIONALLY SCRAMBLED SETS

by Piotr Oprocha

Abstract. — In this paper we investigate numerous constructions of minimal systems
from the point of view of (F1, F2)-chaos (but most of our results concern the particular
cases of distributional chaos of type 1 and 2). We consider standard classes of systems,
such as Toeplitz flows, Grillenberger K-systems or Blanchard-Kwiatkowski extensions
of the Chacón flow, proving that all of them are DC2. An example of DC1 minimal
system with positive topological entropy is also introduced. The above mentioned
results answer a few open problems known from the literature.

1. Introduction

The notion of distributional chaos was introduced by Schweizer and Smıtal
in 1994 in [29] as a property equivalent to positive topological entropy for maps
acting on the unit interval (it extends the notion of pair chaotic in the sense of
Li and Yorke, which was know to be not sufficiently strong to imply positive
topological entropy). Presently, we have at least three different definitions of
distributionally chaotic pair [5] and it was also observed that uniform constant
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of separation of orbits may be important when dealing with this kind of chaos
[23]. Recently, Xiong and Tan used in [31] families of subset of integers to
define chaotic maps, obtaining that way an interesting and general definition.
We adopt this approach here (all the necessary definitions are postponed to the
next section).

In [29] the name distributional chaos do not appear explicitly, however it is
proved there (in different terminology) that on the unit interval, one DC3 pair
is enough to the existence of distributionally ε-scrambled set and both these
properties are equivalent to positive topological entropy. It is also interesting
that chaos means in [29] the existence of uncountable set whose any two distinct
elements form a DC2 pair (so a condition somewhere in the middle between
the above two properties). In general setting (i.e. beyond dimension one) there
is no more such equivalence, that is, there are systems with positive topological
entropy and no DC1 pairs [27] (even minimal ones [4]) as well as systems with
DC1 pairs but entropy zero [22].

There are only a few general tools detecting distributionally scrambled sets
(e.g. see [30, 3, 25]) however dynamics of systems fulfilling assumptions of these
results is highly non-minimal. In the case of minimal maps some methods of
construction have been developed, however they have either entropy zero (e.g.
see [22, 23, 31]) or do not contain DC1 pairs (e.g. see [4]), while containing
plenty of DC2 pairs. In fact, the most challenging conjecture related to distri-
butional chaos (probably first stated by Smítal and then repeated by others,
including the author himself) is that every system with positive entropy must
contain a DC2 pair.

The main aim of this article is to examine various constructions of mini-
mal systems with positive topological entropy (e.g. Toeplitz flows, extensions
of Chacón flow, minimal K-systems, etc.) from the point of view of distri-
butional chaos, or more generally (F1,F2)-chaos, where F1,F2 are upward
hereditary sets of subsets of N (so-called Furstenberg families). That way we
provide many methods of construction of minimal dynamical systems having
uncountably many distributionally chaotic pairs (or not having them at all),
filling a gap existing in the literature of the topic and answering a few open
problems stated before (e.g. these stated by Balibrea and Smítal in [4]). Espe-
cially, two constructions contained in the paper can be of interest: a minimal
system with positive entropy and DC1 pairs (see Theorem 9.3) and minimal
system with positive entropy but without DC1 pairs nor regularly recurrent
points (see Theorem 6.1). Second of this examples follows form a general fact
that almost 1-1 extensions of minimal distal systems never have DC1 pairs (see
Corollary 4.2). We also prove that every minimal u.p.e. system has plenty of
DC2 pairs (see Theorem 7.6), which provides a partial answer (in a very re-
stricted case) to the general conjecture on entropy and DC2 mentioned before.
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2. Preliminaries

2.1. Basic notation. — In this paper X is always assumed to be a compact
metric space with a metric d, and f : X → X to be continuous. The set
of all such maps is denoted C(X). Open balls are denoted by B(x, ε) :=

{y ∈ X : d(x, y) < ε}. The same notation is used for every nonempty set A ⊂
X, that is B(A, ε) :=

⋃
x∈AB(x, ε).

If (X, d1), (Y, d2) are metric spaces, we always endow X × Y with the max-
imum metric ρ((x, y), (p, q)) = max {d1(x, p), d2(y, q)}. The diagonal in the
product X ×X is denoted ∆ := {(x, x) : x ∈ X} and ∆ε := B(∆, ε) for any
ε > 0. By a perfect set we mean a nonempty compact set without isolated
points and by a Cantor set we mean a perfect and totally disconnected set. If
a set A contains a countable intersection of open and dense subsets of X, then
we say that A is residual in X.

By Orb+(x) we denote the set Orb+(x) :=
{
x, f(x), f2(x), . . .

}
and call it

the (positive) orbit of a point x. If f is invertible, then we define orbit of x by
Orb(x) :=

{
f i(x) : i ∈ Z

}
. A point y ∈ X is an ω-limit point of a point x if it is

an accumulation point of the sequence x, f(x), f2(x), . . . . The set of all ω-limit
points of x is said to be the ω-limit set of x or positive limit set of x and is
denoted L+(x, f); we reserve symbol ω to denote another property. We say that
a point x is periodic if fn(x) = x for some n ≥ 1 and recurrent if x ∈ L+(x, f).
Every set M which is nonempty, closed, invariant (i.e. f(M) ⊂ M) and has
no proper subset with these three properties is said to be a minimal set. If X
is the minimal set for f then we say that f is a minimal system. Elements of
minimal system are usually said to be minimal points.

Points x, y ∈ X are proximal, if lim infn→∞ d(fn(x), fn(y)) = 0. We say that
a point x is distal, if it is not proximal to any point y ∈ L+(x, f) \ {x}. We say
that a nonempty set A is synchronously proximal if lim infn→∞ diam fn(A) =

0. It is known that every point is proximal to some minimal point [11] (this
statement is nontrivial when given point is not minimal), so distal points are
always minimal. We say that f is distal if all of its points are distal (by the
above, such a system is always a disjoint sum of minimal systems).

Let X and Y be compact metric spaces and let f ∈ C(X), g ∈ C(Y ). If
there is a continuous onto map φ : X → Y with φ◦f = g ◦φ, we say that f and
g are semiconjugate (by φ). The map φ is said to be a semiconjugacy (between
f and g) or a factor map, the map g is said to be a factor of f and the map f
is said to be an extension of g.

2.2. Families and filters. — Here we recall basic facts related to families and
filters. Our notation follows [2] together with some concepts from [31].

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



404 P. OPROCHA

A (Furstenberg) family F is a collection of subsets of N which is upwards
hereditary, that is

F1 ∈ F and F1 ⊂ F2 =⇒ F2 ∈ F .

A family is proper if N ∈ F and ∅ /∈ F . Recall that a set A ⊂ N is thick if
for every n > 0 there is i such that {i, i+ 1, . . . , i+ n} ⊂ A. We denote by B
the family of infinite subsets of N and by τB the family of all thick subsets of
N.

For every family F we define its dual family by kF := {F ⊂ N : N \ F /∈ F}.
Elements of the dual family kτB are said to be syndetic sets.

If F1 and F2 are families then we define

F1 ·F2 := {F1 ∩ F2 : F1 ∈ F1, F2 ∈ F2} .

Note that F1 ∪F2 ⊂ F1 ·F2 for any two proper families F1,F2. We say that
families F1 and F2 meet when F1 ·F2 is proper. Let P(N) denote the power
set of N. For A ⊂ P(N) we define the family generated by A as

[A ] := {F ⊂ N : A ⊂ F for some A ∈ A }

For the case A = {A}, where A ⊂ N, we simply write [A] instead of [A ]. For
any infinite set Q ∈ B we define 〈Q〉 := [T (Q)] where T (Q) is the set of tails
of Q, i.e. T (Q) = {Q ∩ [n,+∞) : n ∈ N}.

A filter F is a proper family such that F ·F = F . Let A ⊂ P(N) and
denote A ∩ := {A1 ∩ · · · ∩An : Ai ∈ A , n > 0}. If ∅ 6∈ A ∩ then [A ∩] is a
filter. In that case we say that A generates a filter and call [A ∩] the filter
generated by A .

Note that, if Q ∈ B then [Q] and 〈Q〉 are filters generated by {Q} and T (Q)

respectively, since {Q}∩ = {Q} and T (Q)∩ = T (Q).
Given A ⊂ X and x ∈ X we write N(x,A, f) = {n : fn(x) ∈ A} . If A,B

are sets then N(A,B, f) = {n : f−n(B) ∩A 6= ∅}. We say that a point x is
uniformly recurrent if the set N(x, U, f) is syndetic for every open set U 3 x.
It is known that every element of a minimal set is uniformly recurrent, and
L+(x, f) is a minimal set for every uniformly recurrent point (this was first
proved by Birkhoff), in particular minimal or uniformly recurrent points define
the same property in different language.

Let P = {p1 < p2 < · · · } ∈ B. Define

D∗(P ) := lim sup
n→∞

#(P ∩ {1, . . . , n})
n

, D∗(P ) := lim inf
n→∞

#(P ∩ {1, . . . , n})
n

.

We say that D∗(P ) and D∗(P ) are the upper density and the lower density of
P respectively. If D∗(P ) = D∗(P ) then we denote D(P ) := D∗(P ) and call this
number the density of P .
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