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ASYMPTOTIC VASSILIEV INVARIANTS FOR VECTOR FIELDS

by Sebastian Baader & Julien Marché

Abstract. — We analyse the asymptotical growth of Vassiliev invariants on non-
periodic flow lines of ergodic vector fields on domains of R3. More precisely, we show
that the asymptotics of Vassiliev invariants is completely determined by the helicity
of the vector field.

Résumé (Invariants de Vassiliev asymptotiques des champs de vecteurs)
Nous analysons le comportement asymptotique des invariants de Vassiliev des or-

bites non périodiques d’un champ de vecteurs ergodique dans un domaine de R3. Nous
montrons que ce comportement est gouverné par l’hélicité du champ de vecteurs.

1. Introduction

A smooth vector field on a manifold defines a flow whose orbits may be closed
or not. If the manifold is a compact domain G ⊂ R3, we may ask about the
asymptotical growth of knot invariants on non-periodic orbits. A well-known
and classical example for this is the helicity of a vector field, which measures
how pairs of non-periodic orbits are asymptotically linked, in the average [1].
In order to make quantitative statements, we suppose that the flow of the
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vector field X be measure-preserving and ergodic with respect to a probability
measure µ on G, further, that the singularities of X be isolated and that the
periodic orbits of X be not charged by the flow. For every non-periodic point
p ∈ G and T > 0 we define a set K(p, T ) ⊂ R3, as follows:

K(p, T ) = {φX(p, t)|t ∈ [0, T ]} ∪ [p, φX(p, T )],

where φX is the flow of X and [p, φX(p, T )] the geodesic segment in R3 joining
p and φX(p, T ). This set is actually a knot, i.e. an embedded circle, for almost
all p ∈ G, T > 0 ([3], [8]). Under the above hypotheses, Gambaudo and Ghys
proved the existence of an asymptotic signature invariant which is proportional
to the helicity of X [3]: for almost all p ∈ G the limit

σ(X) = lim
T→∞

1

T 2
σ(K(p, T )) ∈ R

exists and is independent of the starting point p ∈ G. Here σ denotes the
signature invariant of links. The asymptotic signature invariant determines the
asymptotical behaviour of a large class of concordance invariants [2]. In this
note we show that Vassiliev invariants are asymptotically determined by the
signature (hence also by the helicity).

Theorem 1. — Let v be a real-valued Vassiliev knot invariant of degree n.
There exists a constant αv ∈ R, such that for almost all p ∈ G the limit

lim
T→∞

1

T 2n
v(K(p, T )) ∈ R

exists and coincides with αvσ(X)n. The constant αv does not depend on the
vector field X.

Gambaudo and Ghys provided the first instance of this theorem since the
helicity can be defined as an asymptotical linking number, which is a Vassiliev
invariant of degree one (for links, however). The proof of Theorem 1 is based on
a asymptotical count of Gauss diagrams with respect to suitable diagrams of the
knots K(p, T ). We give a short summary of Gambaudo and Ghys’ construction
in Section 2. The proof of Theorem 1 is contained in Section 3.

Remark. — For reasons of simplicity, we restrict ourselves to the study of
asymptotical knots and their invariants, rather than links. The case of links
does not pose any additional difficulties.
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2. Asymptotic Diagrams

The main part of Gambaudo and Ghys’ work [3] consists in constructing good
diagrams for the knots K(p, T ). For this purpose, they cover the domain G,
away from the singularities of X, by a countable family of flow boxes { F i}i∈N.
Further, they define a projection π : R3 → R2 onto a plane which is well-
adapted to this family: for every ε > 0, there exists a finite subset C ⊂ N,
such that for almost all p ∈ G, T > 0 large enough, the diagram π(K(p, T )) is
regular and, up to an error ≤ εT 2, its crossings arise from pairs of overcrossing
flow boxes F i, F j , with i, j ∈ C . Moreover, at these finitely many overcrossing
spots the diagram looks like a rectangular grid, as sketched in Figure 1. We
will shortly see that the number of crossings of these grids grows like T 2.

Figure 1.

Let ni(p, T ) = π0( F i ∩ {φX(p, t)|t ∈ [0, T ]}) be the number of times the
flow line starting at p and ending at φX(p, T ) enters the flow box F i. Applying
Birkhoff’s ergodic theorem to the characteristic function of the flow box F i,
we immediately see that for almost all p ∈ G the limit

ni = lim
T→∞

1

T
ni(p, T ) > 0

exists (and is proportional to the volume of the flow box µ( F i)). Therefore the
number of crossings cij(p, T ) at an overcrossing spot of two flow boxes F i, F j
satisfies

(1) lim
T→∞

1

T 2
cij(p, T ) = ninj .

For later purposes, we choose a natural number N ∈ N and subdivide the
time interval [0, T ] into N sub-intervals I1, I2, . . . , IN of length T

N . Every index
k ∈ {1, 2, . . . , N} gives rise to a function ni,k(p, T ) = π0( F i∩{φX(p, t)|t ∈ Ik}).
Again, by Birkhoff’s theorem, we obtain

(2) lim
T→∞

1

T
ni,k(p, T ) =

ni
N
.

At last, for two flow box indices i1, i2 ∈ C , and k1, k2 ∈ {1, 2, . . . , N}, we define
the number of crossings ci1,k1,i2,k2

(p, T ) between F i1 ∩ {φX(p, t)|t ∈ Ik1
}) and
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F i2 ∩ {φX(p, t)|t ∈ Ik2}) at an overcrossing spot of the flow boxes F i1 , F i2 .
Equation (2) implies

(3) lim
T→∞

1

T 2
ci1,k1,i2,k2

(p, T ) =
ni1ni2
N2

This equality will play an important role in the proof of Theorem 1.

3. Gauss Diagram Formulae and Proof of Theorem 1

A Gauss diagram is nothing but a special notation for a knot diagram. It
consists of an oriented circle with a finite number of signed arrows connecting
pairs of points on the circle. The circle stands for the oriented knot itself,
while the arrows encode crossing points of the knot diagram, pointing from the
lower to the upper strand. Their signs indicate the signs of their crossings. For
example, Figure 2 shows a Gauss diagram representing the standard diagram of
the twist knot with six crossings. Here the orientation of the circle is understood
to be clockwise.

+

−

−

−

−

+

Figure 2.

It is often convenient to consider pointed Gauss diagram, i.e. Gauss diagrams
with a distinguished base point on its circle. Throughout this section, we will
work with pointed Gauss diagram. In particular, we will be concerned with
the pointed Gauss diagrams G(p, T ) arising from Gambaudo and Ghys’ special
diagrams D(p, T ) = π(K(p, T )).

Gauss diagrams are of special interest in the theory of Vassiliev invariants,
since the latter can be identified with certain formal linear combinations of
Gauss diagrams. In order to explain this, we have to introduce a pairing between
Gaus diagrams. Let Γ, G be two Gauss diagrams. The expression

〈Γ, G〉

is defined as the weighted number of sub-diagrams of G isomorphic to Γ, re-
specting the circles, base points and all orientations. The weights are simply
the products over all signs of arrows of the corresponding subgraphs and Γ.
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