Bulletin

de la SOCIÉTÉ MATHÉMATIQUE DE FRANCE

INCOMPRESSIBLE GRASSMANNIANS OF ISOTROPIC SUBSPACES

Nikita A. Karpenko

Tome 144
Fascicule 4

Le Bulletin de la Société Mathématique de France est un périodique trimestriel de la Société Mathématique de France.

Fascicule 4, tome 144, décembre 2016

Comité de rédaction

Emmanuel Breuillard	Raphaël Krikorian
Yann Bugeaud	Julien Marché
Jean-François Dat	Emmanuel Russ
Charles Favre	Christophe Sabot
Marc Herzlich	Wilhelm Schlag
O'Grady Kieran	
Pascal Hubert (dir.)	

Diffusion

Maison de la SMF	Hindustan Book Agency	AMS
Case 916 - Luminy	O-131, The Shopping Mall	P.O. Box 6248
13288 Marseille Cedex 9	Arjun Marg, DLF Phase 1	Providence RI 02940
France	Gurgaon 122002, Haryana	USA
smf@smf.univ-mrs.fr	Inde	www.ams.org

Tarifs

Vente au numéro : $43 €(\$ 64)$
Abonnement Europe : $178 €$, hors Europe : $194 €(\$ 291)$
Des conditions spéciales sont accordées aux membres de la SMF.

> Secrétariat : Nathalie Christiaën Bulletin de la Société Mathématique de France Société Mathématique de France Institut Henri Poincaré, 11, rue Pierre et Marie Curie 75231 Paris Cedex 05, France Tél : (33) 0144276799 • Fax : (33) 0140469096 revues@smf.ens.fr • http://smf.emath.fr/
© Société Mathématique de France 2016
Tous droits réservés (article L 122-4 du Code de la propriété intellectuelle). Toute représentation ou reproduction intégrale ou partielle faite sans le consentement de l'éditeur est illicite. Cette représentation ou reproduction par quelque procédé que ce soit constituerait une contrefaçon sanctionnée par les articles L 335-2 et suivants du CPI.

> ISSN 0037-9484

Directeur de la publication : Stéphane Seuret

INCOMPRESSIBLE GRASSMANNIANS OF ISOTROPIC SUBSPACES

by Nikita A. Karpenko

Abstract. - We study 2-incompressible Grassmannians of isotropic subspaces of a quadratic form, of a hermitian form over a quadratic extension of the base field, and of a hermitian form over a quaternion algebra.

Résumé (Grassmanniennes incompressibles d'espaces isotropes)
Nous étudions des grassmanniennes 2-incompressibles de sous-espaces isotropes d'une forme quadratique ainsi que d'une forme hermitienne au-dessus d'une extension quadratique du corps de base ou au-dessus d'une algèbre de quaternions.

1. Introduction

Let F be a field and let p be a prime number. We refer to [6] and [15] for definitions and general discussion of canonical p-dimension and p-incompressibility. We only recall that canonical p-dimension $\operatorname{cdim}_{p} X$ of a smooth complete variety X is the least dimension of the image of a self-correspondence $X \rightsquigarrow X$

Texte reçu le 10 février 2015, révisé le le 10 février 2016 et accepté le 10 mars 2016.
Nikita A. Karpenko, Mathematical \& Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada - E-mail : karpenko@ualberta.ca
2010 Mathematics Subject Classification. - 20G15, 14C25.
Key words and phrases. - Quadratic forms, algebraic groups, projective homogeneous varieties, orthogonal, symplectic, and unitary Grassmannians, Chow groups and motives, canonical dimension and incompressibility.
This work has been supported by a Discovery Grant from the National Science and Engineering Board of Canada.
of multiplicity prime to $p ; X$ is called p-incompressible, if $\operatorname{cdim}_{p} X=\operatorname{dim} X$, that is, if every self-correspondence of multiplicity prime to p is dominant.

We work with projective homogeneous varieties, i.e., twisted flag varieties under semisimple affine algebraic groups. One large class of such varieties, for which the p-incompressibility property is completely understood, is given by the generalized Severi-Brauer varieties of central simple algebras, [8]. In the present paper we study another large class which may be considered as the simplest one for which we do not possess a complete general criterion of p-incompressibility. Namely, we study Grassmannians of totally isotropic spaces of a fixed dimension for:

- a non-degenerate quadratic form (orthogonal case, algebraic groups of types \mathcal{B} and \mathscr{D}), or
- a hermitian form over a separable quadratic extension field of F (unitary case, type ${ }^{2} Q$), or
- a hermitian form over a quaternion division F-algebra (symplectic case, type \mathscr{C}), where in the characteristic 2 case the hermitian form is supposed to be alternating, [14, §4.A].
Note that in the symplectic case, only the Grassmannians of subspaces of integral dimension over the quaternion algebra are considered because the others are not interesting from the viewpoint of the canonical dimension. Also note that $p=2$ is the only interesting prime for the varieties treated here.

Our main result on the orthogonal case is Theorem 3.1. Roughly speaking, it asserts that most of the necessary conditions of 2-incompressibility, established in [7], are actually necessary, see Remark 3.2. Therefore Theorem 3.1 may be considered as a step towards finding a precise criterion of 2 -incompressibility for this type of varieties.

Our main results for the unitary and the symplectic case are Theorems 4.1 and 5.2. Although the varieties occurring in the three cases have quite different nature, we treat them in similar ways and the obtained results are parallel.

These results can be used to provide a conceptual proof of the criterion of p-incompressibility for products of two projective homogeneous varieties in the case where one of the varieties involved is a Grassmannian of isotropic subspaces, see [12]. Although the criterion has been recently proved in full in [11], the available general proof is very ad-hoc.

Acknowledgements. - I am grateful to Alexander Merkurjev for asking me the question about possibility of generalization of [10, Theorem 3.1] during my talk at the conference "(A)round forms, cycles and motives" on the occasion of the 80th birthday of Albrecht Pfister in Mainz, Germany. I also thank the two anonymous referees (of the submission of the preprint [12] to Int. Math. Res. Not. $I M R N$) for careful reading and suggestions that improved the exposition.

[^0]This work has been mostly done during my stay at the Universität DuisburgEssen and the Max-Planck-Institut für Mathematick in Bonn; I thank them for hospitality.

2. Canonical p-dimension of a fibration

As shown in [10], canonical p-dimension of the product $X \times Y$ of projective homogeneous F-varieties X and Y has $\operatorname{cdim}_{p} X+\operatorname{cdim}_{p} Y_{F(X)}$ as an upper bound. We may view X as the base of the projection (a "trivial fibration") $X \times Y \rightarrow X$, and $Y_{F(X)}$ is its generic fiber. In this section, we generalize this upper bound relation to the case of a more general fibration and also we sharpen the upper bound, replacing $\operatorname{cdim}_{p} X$ by an, in general, smaller integer $\operatorname{cdim}_{p}^{\prime} X$ defined in terms of X and the function field of the total variety of the fibration.

Here is the type of the fibrations we are interested in. Let G be a quasi-split semisimple affine algebraic group over F becoming split over a finite extension field of a p-power degree, T a G-torsor over F, P a parabolic subgroup of G and P^{\prime} a parabolic subgroup of G contained in P. We consider the fibration

$$
\pi: Z:=T / P^{\prime} \rightarrow T / P=: X
$$

of projective homogeneous varieties, and we write Y for its generic fiber. We are using the Chow group Ch with coefficients in $\mathbb{F}_{p}:=\mathbb{Z} / p \mathbb{Z}$. In particular, the degree homomorphism deg on Ch_{0} of a complete variety takes its values in \mathbb{F}_{p}.

Let us first recall
Proposition 2.1 ([7, Corollary 6.2]). - Canonical p-dimension $\operatorname{cdim}_{p} X$ of X is the minimal integer d such that there exist a cycle class $\alpha \in \operatorname{Ch}^{d} X_{F(X)}$ and a cycle class $\beta \in \mathrm{Ch}_{d} X$ with $\operatorname{deg}\left(\beta_{F(X)} \cdot \alpha\right)=1 \in \mathbb{F}_{p}$.

Lemma 2.2. - In the above settings, we have

$$
\operatorname{cdim}_{p} Z \leq \operatorname{cdim}_{p}^{\prime} X+\operatorname{cdim}_{p} Y
$$

where $\operatorname{cdim}_{p}^{\prime} X$ is the minimal integer d such that there exist elements $\alpha \in \operatorname{Ch}^{d}\left(X_{F(Z)}\right)$ and $\beta \in \mathrm{Ch}_{d}(X)$ with $\operatorname{deg}\left(\alpha \cdot \beta_{F(Z)}\right)=1$.

Remark 2.3. - Replacing $F(Z)$ by $F(X)$ in the definition of $\operatorname{cdim}_{p}^{\prime} X$, we get $\operatorname{cdim}_{p}(X)$, see Proposition 2.1. Since $F(Z) \supset F(X)$, we have $\operatorname{cdim}_{p}^{\prime} X \leq$ $\operatorname{cdim}_{p} X$.

REmARK 2.4. - In the case where the parabolic subgroup P^{\prime} is special, Lemma 2.2 has been proved in [5, Lemma 5.3]. The proof was more complicated (and the statement-more specific) because Proposition 2.1 was not available at the time.

[^0]: томе 144 - $2016-\mathrm{N}^{\mathrm{O}} 4$

