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THE NAKAYAMA FUNCTOR AND ITS COMPLETION
FOR GORENSTEIN ALGEBRAS

by Srikanth B. Iyengar & Henning Krause

To Bill Crawley-Boevey on his 60th birthday.

Abstract. — Duality properties are studied for a Gorenstein algebra that is finite
and projective over its center. Using the homotopy category of injective modules, it is
proved that there is a local duality theorem for the subcategory of acyclic complexes
of such an algebra, akin to the local duality theorems of Grothendieck and Serre in
the context of commutative algebra and algebraic geometry. A key ingredient is the
Nakayama functor on the bounded derived category of a Gorenstein algebra and its
extension to the full homotopy category of injective modules.

Résumé (Le foncteur de Nakayama et sa complétion pour les algèbres de Gorenstein).
— Des propriétés de dualité sont étudiées pour une algèbre de Gorenstein finie et
projective sur son centre. En utilisant la catégorie homotopique des modules injectifs,
il est démontré qu’il existe un théorème de dualité locale pour la sous-catégorie des
objets acycliques d’une telle algèbre, semblable aux théorèmes de dualité locale de
Grothendieck et Serre dans le cadre de l’algèbre commutative et de la géométrie algé-
brique. Un ingrédient clé est le foncteur de Nakayama sur la catégorie dérivée bornée
d’une algèbre de Gorenstein, et son extension à toute la catégorie homotopique des
modules injectifs.
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348 S. B. IYENGAR & H. KRAUSE

1. Introduction

This work is a contribution to the representation theory of Gorenstein alge-
bras, both commutative and noncommutative, with a focus on duality phe-
nomena. The notion of a Gorenstein variety was introduced by Grothen-
dieck [26, 25, 29, 30] and grew out of his reinterpretation and extension of
Serre duality [43] for projective varieties. A local version of his duality is that
over a Cohen–Macaulay local algebra R of dimension d, with maximal ideal m,
and for complexes F,G with F perfect, there are natural isomorphisms

HomR(ExtiR(F,G), I(m)) ∼= Extd−iR (G,RΓm(ωR ⊗L
R F )),

where ωR is a dualizing module, and I(m) is the injective envelope of R/m. The
functor RΓm represents local cohomology at m. Serre duality concerns the case
where R is the local ring at the vertex of the affine cone of a projective variety.
The ring R (equivalently, the variety it represents) is said to be Gorenstein if,
in addition, the R-module ωR is projective. Serre observed that this property
is characterized by R having a finite self-injective dimension. This result ap-
pears in the work of Bass [4], who gave numerous other characterizations of
Gorenstein rings.

Iwanaga [31] launched the study of Noetherian rings, not necessarily com-
mutative, having finite self-injective dimension on both sides. Now known as
Iwanaga–Gorenstein rings, these form an integral part of the representation the-
ory of algebras. In that domain, the principal objects of interest are maximal
Cohen–Macaulay modules and the associated stable category. Auslander [1]
and Buchweitz [13] have proved duality theorems for the stable category of a
Gorenstein algebra with isolated singularities. The driving force behind our
work was to understand what duality phenomena can be observed for general
Gorenstein algebras. Theorem 1.2 below is what we found, following Grothen-
dieck’s footsteps.

We set the stage to present that result and begin with a crucial definition.

Definition 1.1. — Let R be a commutative Noetherian ring. An R-algebra
A is called Gorenstein if

(1) the R-module A is finitely generated and projective, and
(2) for each p in SpecR with Ap 6= 0 the ring Ap has finite injective dimen-

sion as a module over itself, on the left and on the right.

A Gorenstein R-algebra A itself need not be Iwanaga–Gorenstein. Indeed,
for A commutative and Gorenstein, the injective dimension of A is finite pre-
cisely when its Krull dimension is finite, and there exist rings locally of finite
injective dimension but of infinite Krull dimension. There are precedents to
the study of Gorenstein algebras, starting with [4] and more recently in the
work of Goto and Nishida [24]. Our work differs from theirs in its focus on
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duality. We refer to [22] for a discussion of examples and natural constructions
preserving the Gorenstein property.

Let A be a Gorenstein R-algebra and ωA/R := HomR(A,R) the dualizing
bimodule. Unlike in the commutative case, ωA/R does not need to be projective
(neither on the left nor on the right), and the bimodule structure can be com-
plicated. Nevertheless, it is a tilting object in D(ModA), the derived category
of A-modules, inducing a triangle equivalence

RHomA(ωA/R,−) : D(ModA) ∼−−→ D(ModA) ;

see Section 4. The representation theory of a Gorenstein algebra A is gov-
erned by its maximal Cohen–Macaulay modules, namely, finitely generated
A-modules M with ExtiA(M,A) = 0 for i ≥ 1. For our purposes, their infin-
itely generated counterparts are also important. Thus, we consider Gorenstein
projective A-modules (abbreviated to G-projective), which are by definition
A-modules occurring as syzygies in acyclic complexes of projective A-modules
[13, 19]. The G-projective modules form a Frobenius exact category, and so the
corresponding stable category, is triangulated. Its inclusion into the usual sta-
ble module category has a right adjoint, the Gorenstein approximation functor,
GP(−). The functor

S := GP(ωA/R ⊗A −) : GProjA −→ GProjA

is an equivalence of triangulated categories and plays the role of a Serre functor
on the subcategory of finitely generated G-projectives. This is spelled out in
the result below. Here, the ÊxtiA(−,−) are the Tate cohomology modules,
which compute morphisms in GProjA.

Theorem 1.2. — Let A be a Gorenstein R-algebra and letM,N be G-projective
A-modules with M finitely generated. For each p ∈ SpecR, there is a natural
isomorphism

HomR(ÊxtiA(M,N), I(p)) ∼= Êxtd(p)−i
A (N,ΓpS(M)) ,

where d(p) = dim(Rp)− 1.

This is the duality theorem we seek; it is proved in Section 9. It is new even
for commutative rings. The parallel to Grothendieck’s duality theorem is clear.

In the following, we explain the strategy for proving this theorem and some
essential ingredients. The functor Γp is analogous to the local cohomology
functor encountered above. It is constructed in Section 7 following the recipe
in [7], using the natural R-action on GProjA. Even if N is finitely generated,
Γp(N) need not be, which is one reason we have to work with infinitely gen-
erated modules in the first place. If R is local with maximal ideal p, and A
has isolated singularities, Γp is the identity, and the duality statement above is
precisely the one discovered by Auslander and Buchweitz.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



350 S. B. IYENGAR & H. KRAUSE

For a Gorenstein algebra, the stable category of G-projective modules is
equivalent to Kac(InjA), the homotopy category of acyclic complexes of in-
jective A-modules. This connection is explained in Section 6 and builds on
the results from [33, 35]. In fact, much of the work that goes into proving
Theorem 1.2 deals with K(InjA), the full homotopy category of injective A-
modules; see Section 2. A key ingredient in all this is the Nakayama functor
on the category of A-modules:

N : ModA −→ ModA where N(M) = HomA(ωA/R,M).

As noted above, its derived functor induces an equivalence on D(ModA). Fol-
lowing [35] we extend the Nakayama functor to all of K(InjA), which one may
think of as a triangulated analogue of the ind-completion of Db(modA). This
completion of the Nakayama functor is also an equivalence:

N̂A/R : K(InjA) ∼−−→ K(InjA) .
This is proved in Section 5, where we establish also that it restricts to an
equivalence on Kac(InjA). The induced equivalence on the stable category of
G-projective modules is precisely the functor S in the statement of Theorem 1.2;
see Section 6 where the singularity category of A, in the sense of Buchweitz [13]
and Orlov [42] also appears. To make this identification, we need to extend
results of Auslander and Buchweitz concerning G-approximations; this is dealt
with in Appendix A.

Our debt to Grothendieck is evident. It ought to be clear by now that the
work of Auslander and Buchweitz also provides much inspiration for this paper.
Whatever new insight we bring is through the systematic use of the homotopy
category of injective modules and methods from abstract homotopy theory, es-
pecially the Brown representability theorem. To that end we need the structure
theory of injectives over finite R-algebras from Gabriel’s thesis [20]. Gabriel
also introduced the Nakayama functor in representation theory of Artin algebra
in his exposition of Auslander–Reiten duality; it is the categorical analogue of
the Nakayama automorphism that permutes the isomorphism classes of simple
modules over a self-injective algebra [21]. Moreover, it was Gabriel who pointed
out the parallel between derived equivalences induced by tilting modules and
the duality of Grothendieck and Roos [34].

2. Homotopy category of injectives

In this section, we describe certain functors on homotopy categories attached
to Noetherian rings. Our basic references for this material are [32, 35].

Throughout, A will be a ring that is Noetherian on both sides; that is to say,
A is Noetherian as a left and as a right A-module. In what follows, A-modules
will mean left A-modules, and Aop-modules are identified with right A-modules.
We write ModA for the (abelian) category of A-modules and modA for its full
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subcategory consisting of finitely generated modules. Also, InjA and ProjA are
the full subcategories of ModA consisting of injective and projective modules,
respectively.

For any additive category A ⊆ ModA, like the ones in the last para-
graph, K(A) will denote the associated homotopy category, with its natural
structure as a triangulated category. Morphisms in this category are denoted
HomK(A)(−,−). An objectX in K(A) is acyclic ifH∗(X) = 0, and the full sub-
category of acyclic objects in K(A) is denoted Kac(A). A complex X ∈ K(A)
is said to be bounded above if Xi = 0 for i � 0, and bounded below if Xi = 0
for i� 0.

In the sequel our focus in mostly on K(InjA), the homotopy category of
injective modules, and its various subcategories; the analogous categories of
projectives play a more subsidiary role. From work in [33, 35, 41], we know
that the triangulated categories K(InjA) and K(ProjA) are compactly gen-
erated since the ring A is Noetherian on both sides; the compact objects in
these categories are described further below. Let D(ModA) denote the (full)
derived category of A-modules and q : K(ModA) → D(ModA) the localiza-
tion functor; its kernel is Kac(ModA). We write q also for its restriction to
the homotopy categories of injectives and projectives. These functors have
adjoints:

K(InjA) D(ModA)
q

i
and K(ProjA) D(ModA) .

q

p

Our convention is to write the left adjoint above the corresponding right one. In
what follows, it is convenient to conflate i and p with i◦q and p◦q, respectively.
The images of i and p are the K-injectives and K-projectives, respectively.
Recall that an object X in K(InjA) is K-injective if HomK(A)(W,X) = 0 for
any acyclic complexW in K(ModA). We write Kinj(A) for the full subcategory
of K(InjA) consisting of K-injective complexes. The subcategory Kproj(A) ⊆
K(ProjA) of K-projective complexes is defined similarly.

Compact objects. — Since A is Noetherian InjA is closed under arbitrary di-
rect sums, and hence so is the subcategory K(InjA) of K(ModA). As in any
triangulated category with arbitrary direct sums, an object X in K(InjA) is
compact if HomK(A)(X,−) commutes with direct sums. The compact objects
in K(InjA) form a thick subcategory, denoted Kc(InjA). The adjoint pair
(q, i) above restricts to an equivalence of triangulated categories

Kc(InjA) Db(modA) ,
q

i
∼

where Db(modA) denotes the bounded derived category of modA; see [35,
Proposition 2.3] for a proof of this assertion. The corresponding identification
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of the compact objects in K(ProjA) is a bit more involved and is due to Jør-
gensen [33, Theorem 3.2]. The assignment M 7→ HomAop(pM,A) induces an
equivalence

Db(modAop)op ∼−−→ Kc(ProjA) .

See also [32], where these two equivalences are related. The formula below for
computing morphisms from compacts in K(InjA) is useful in the sequel.

Lemma 2.1. — For C,X ∈ K(InjA) with C compact, there is a natural iso-
morphism

HomK(A)(C,X) ∼= H0(HomA(pC,A)⊗A X) .

Proof. — Since C is compact its K-projective resolution pC is homotopy equiv-
alent to a complex that is bounded above and consists of finitely generated
projective A-modules. For each integer n, let X(n) be the subcomplex X>−n

of X. Since X(n) is K-injective, the quasi-isomorphism pC → C induces the
one on the left

HomA(C,X(n)) ∼−−→ HomA(pC,X(n)) ∼←−− HomA(pC,A)⊗A X(n) .

The one on the right is the standard one and holds because of the aforemen-
tioned properties of pC and the fact that X(n) is bounded below. One thus
gets a canonical isomorphism

HomK(A)(C,X(n)) ∼−−→ H0(HomA(pC,A)⊗A X(n)) .

It is compatible with the inclusions X(n) ⊆ X(n + 1), so induces the isomor-
phism in the bottom row of the following diagram.

HomK(A)(C,hocolimn>0 X(n)) H0(HomA(pC,A)⊗A hocolimn>0 X(n))

colimn>0 HomK(A)(C,X(n)) colimn>0 H
0(HomA(pC,A)⊗A X(n)) .

o

∼

o

∼

The isomorphism on the left holds by the compactness of C, while the one on
the right holds because H0(−) commutes with homotopy colimits. It remains
to note that hocolimn>0 X(n) = X in K(InjA). �

A recollement. — The functors Kac(InjA) incl−−→ K(InjA) q−→ D(ModA) in-
duce a recollement of triangulated categories

(1) Kac(InjA) K(InjA) D(ModA) .incl
r

s
q

i

j
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The functor i is the one discussed above; it embeds D(ModA) as the homotopy
category of K-injective complexes. The functor r thus has a simple description:
there is an exact triangle
(2) rX −→ X −→ iX −→ ,

where the morphism X → iX is the canonical one. Indeed, rX is evidently
acyclic, and if W is in Kac(InjA), the induced map HomK(A)(W, rX) →
HomK(A)(W,X) is an isomorphism, for one has HomK(A)(W, iX) = 0.

The functor j : D(ModA) → K(InjA) is fully faithful. The image of j
equals the kernel of s and identifies with Loc(iA), the localizing subcategory
of K(InjA) generated by the injective resolution of A; see [35, Theorem 4.2].
One may think of j as the injective version of taking projective resolutions; see
Lemma 2.5. To justify this claim takes preparation.

Lemma 2.2. — Restricted to the subcategory Loc(iA) of K(InjA) there is a
natural isomorphism of functors r ∼−→ Σ−1si.

Proof. — Consider anew the exact triangle (2), but for X in Loc(iA):
rX −→ X −→ iX −→ ΣrX .

Apply s and remember that its kernel is Loc(iA). �

Projective algebras. — In the remainder of this section, we assume that the
ring A (which hitherto has been Noetherian on both sides) is also projective, as
a module, over some central subring R. For the moment, the only role R plays
is to allow for constructions of bimodule resolutions with good properties. Set
Aev := A⊗R Aop, the enveloping algebra of the R-algebra A, and set

E := iAevA .

This is an injective resolution of A as a (left) module over Aev. Since E is a
complex of A-bimodules, for any complex X of A-modules, the right action of
A on E induces a left A-action on HomA(E,X). The structure map A→ E of
bimodules induces a morphism of A-complexes
(3) HomA(E,X) −→ HomA(A,X) ∼= X for X ∈ K(ModA).

The computation below will be used often:

Lemma 2.3. — The morphism in (3) is a quasi-isomorphism for X ∈ K(InjA).

Proof. — By considering the mapping cone of A → E, the desired statement
reduces to: For any complexW ∈ K(ModA) that is acyclic and satisfiesW i = 0
for i � 0, one has HomK(A)(W,X) = 0. Without loss of generality we can
assume W i = 0 for i < 0. Then one gets the first equality below

HomK(A)(W,X) = HomK(A)(W,X>−1) = 0,

and the second one holds because X>−1 is K-injective. �
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Since A is projective as an R-module, Aev is projective as an A-module both
on the left and on the right. The latter condition implies, by adjunction, that
as a complex of left A-modules E consists of injectives. In particular, for any
projective A-module P , the A-complex E ⊗A P consists of injective modules.
Thus, one has an exact functor

E ⊗A − : K(ProjA) −→ K(InjA) .

For each X in K(InjA), one has isomorphisms

HomK(A)(E ⊗A pX,X) ∼= HomK(A)(pX,HomA(E,X))
∼= HomK(A)(pX,X) .

The second isomorphism is a consequence of Lemma 2.3 and the K-projectivity
of pX. Thus, corresponding to the morphism pX → X, there is natural
morphism

(4) π(X) : E ⊗A pX −→ X

of complexes of A-modules.

Lemma 2.4. — The morphism π(X) in (4) is a quasi-isomorphism for each X.

Proof. — Let η : A → E and ε : pX → X denote the structure maps. These
fit in the commutative diagram

A⊗A pX pX

E ⊗A pX X .

η⊗ApX

∼

ε

π(X)

The map η ⊗A pX is a quasi-isomorphism as η is one and pX is K-projective.
Thus, π(X) is a quasi-isomorphism. �

The stabilization functor. — The functor s : K(InjA) → Kac(InjA) from (1)
admits the following description in terms of its kernel, which uses the natural
transformation π : E ⊗A p(−)→ id of functors on K(InjA) from (4).

Lemma 2.5. — Each object X in K(InjA) fits into an exact triangle

E ⊗A pX π(X)−−−−→ X −→ sX −→ ,

and this yields a natural isomorphism E ⊗A pX ∼−→ jX.

Proof. — Since π(X) is a quasi-isomorphism, by Lemma 2.4, the complex sX
is acyclic. In K(ProjA), the complex pX is in Loc(A), and hence in K(InjA),
the complex E⊗ApX is in Loc(E). It remains to observe that ifW ∈ K(InjA)
is acyclic, then HomK(A)(E,W ) = 0 by Lemma 2.3. �
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