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ELLIPTIC ESTIMATES IN COMPOSITE MEDIA
WITH SMOOTH INCLUSIONS:

AN INTEGRAL EQUATION APPROACH

 H AMMARI, E BONNETIER, F TRIKI
 M VOGELIUS

A. – We consider a scalar elliptic equation for a composite medium consisting of ho-
mogeneous C1,α0 inclusions, 0 < α0 ≤ 1, embedded in a constant matrix phase. When the inclu-
sions are separated and are separated from the boundary, the solution has an integral representation,
in terms of potential functions defined on the boundary of each inclusion. We study the system of in-
tegral equations satisfied by these potential functions as the distance between two inclusions tends to
0. We show that the potential functions converge in C0,α, 0 < α < α0 to limiting potential functions,
with which one can represent the solution when the inclusions are touching. As a consequence, we ob-
tain uniform C1,α bounds on the solution, which are independent of the inter–inclusion distances.

R. – Nous étudions des milieux composites constitués d’inclusions homogènes de
forme C1,α0 , immergées dans une phase matrice constante. Lorsque les inclusions ne se touchent
pas, la solution de l’équation de diffusion peut être représentée à l’aide de potentiels de surface,
solutions d’un système d’équations intégrales. Nous étudions ce système lorsque la distance inter-
inclusion tend vers 0. Nous montrons que les potentiels de surface convergent dans C0,α, 0 < α < α0,
vers des potentiels limites, qui permettent d’obtenir une représentation intégrale du problème limite.
Nous en déduisons des estimations sur les solutions dans C1,α, uniformes par rapport à la distance
inter-inclusions.

1. Introduction

In a bounded domain Ω ⊂ R2, we consider a composite medium consisting of a finite
number of inclusions embedded in a matrix phase. We assume that the inclusions and the
matrix have (different) constant, scalar conductivities. The resulting, spatially varying, piece-
wise constant conductivity is denoted by a(·). Given a current g on the boundary ∂Ω, with∫
∂Ω
g dσ = 0, we consider the solution u to the elliptic equation

∇ · (a(·)∇u) = 0 in Ω, with a(·)∂νu = g on ∂Ω,

in other words, we consider the continuous function u, which is harmonic in each inclusion
as well as in the matrix, which satisfies the usual transmission conditions across the inclusion
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boundaries, and which has the prescribed co-normal derivative g on ∂Ω. To make u unique
we impose the condition

∫
∂Ω
u dσ = 0 .

In this paper, we are interested in a priori estimates for the solution u, and in particular its
gradient. We assume that Ω has a smooth boundary, and that the imposed current is smooth.
When the inclusions are merely Lipschitz, it is well known (from elliptic theory in domains
with corners) that ∇u is generally not uniformly bounded, i.e., generally not in L∞. On the
other hand, when the inclusions are smooth (say C1,α0 , 0 < α0 ≤ 1) and when they are
not mutually touching and do not touch ∂Ω, it is equally well known that ∇u is bounded.
A natural question is whether ∇u stays uniformly bounded, even as some of the inclusions
get close.

This question has been addressed in several papers (see for example [11] and [18]). It
has been established that ∇u is bounded in L∞(Ω) independly of the distance between the
smooth inclusions. The answer given in [18] is actually quite a bit more general. It addresses
the case of a divergence form elliptic equation with ‘piecewise Hölder coefficients’: assume
there exist numbers 0 < α0, 0 < c0, µ ≤ 1, 0 < λ0 < Λ0, and a positive integer M such that

i. Ω contains M possibly touching inclusions Dl, 1 ≤ l ≤ M , each of which is a C1,α0

subdomain.
ii. For any 1 ≤ l ≤M , dist(Dl, ∂Ω) > c0 > 0,

iii. In each inclusion, and in the remaining partDM+1 := Ω\∪1≤l≤MDl, the conductivity
satisfies λ0 < a|Dl < Λ0, and has Cµ regularity.

Then
M+1∑
l=1

||u|| C1,α(Dl∩Ωε)
≤ C||g||L2(∂Ω), for any 0 < α < min{µ, α0

2(α0 + 1)
},(1)

where Ωε, ε > 0, denotes the set

Ωε = {X ∈ Ω, dist(X, ∂Ω) > ε}.

The constant C depends on ε, α,M, λ0,Λ0, µ,Ω and the appropriate C1,α “norms” of the
parametrizations of the inclusion boundaries. But note that C is independent of the inter–
inclusion distance. The proof given in [18] uses elliptic blow-up techniques and maximum
principles, and is thus restricted to scalar problems.

In a subsequent paper [19], Y.-Y. Li and L. Nirenberg extended the above result to strongly
elliptic systems, with the same restriction 0 < α < min{µ, α0

2(α0+1)} for the regularity
“measure” of u. Recently, G. Citti and F. Ferrari [13] followed the approach of [18], using
more precise estimates and obtained an improved regularity result. They show that the
solution u is locally in C1,α, for α ≤ min{µ, α0}. However, they assume that the inclusions
are strictly separated from one another, and their proof yields regularity estimates that may
depend on the inter-inclusion distance. The uniform character of the estimates is the cardinal
point of [18] and of our work.

In the case of perfectly conducting or perfectly insulating inclusions the gradients may
blow up as the inter-inclusion distance, δ, approaches 0. The estimates (1) are therefore not

4 e SÉRIE – TOME 48 – 2015 – No 2



ELLIPTIC ESTIMATES 455

uniform in the magnitude of the conductivities. In [7], the solution for perfectly conducting
inclusions is shown to satisfy

(2)


||∇u||L∞ ≤ C√

δ
||u||L2(∂Ω) for n = 2,

||∇u||L∞ ≤ C
δ| ln δ| ||u||L2(∂Ω) for n = 3,

||∇u||L∞ ≤ C
δ ||u||L2(∂Ω) for n = 4,

where n is the ambient dimension. The case n = 2 was derived independently by Yun, using
conformal mapping techniques [22]. The picture is less complete for the case of insulating
inclusions, see [8].

For n = 2 and for circular inclusions, one can obtain very precise bounds in terms of
both contrast and inter-inclusion distance, since the solution has a series representation that
lends itself to asymptotic analysis [5, 3, 12, 20]. Optimal upper and lower bounds on the
potential gradients are derived in [5, 3] for nearly touching pairs of circular inclusions. In
the case of two disks, a decomposition of the solution into a singular part, and a part that
remains uniformly bounded with respect to δ, is given in [4].

When the conductivity is piecewise constant, and when the inclusions are C1,α0 , mutually
separated and separated from the boundary, then one can represent u in the form

u(X) =

M∑
l=1

Slϕl(X) +H(X),(3)

where H is a harmonic function, where each ϕl is defined on ∂Dl, and where Sl denotes
the single layer potential on ∂Dl. Invoking the transmission conditions on ∂Dl and the
Neumann condition on ∂Ω, we can derive a system of integral equations, for the ϕl’s, and
an associated (implicit) formula for H. As each inclusion has C1,α0 regularity, results from
classical potential theory (see, e.g., [15]) show that this system is invertible. Detailed facts
about the regularity of u may be deduced from the representation (3).

The aim of this paper is to show that the system of integral equations for the ϕl’s is
uniformly invertible in C0,α as inclusions get close. The associated uniform estimates on the
inverse can then be used to derive a priori estimates for the solution, u, in C1,α norms.

The integral representation (3) of solutions has also been used in other related contexts.
In particular, recent works have focused on the connection between the bounds on ∇u and
the spectral properties of the kernel of the integral equation system (the Neumann–Poincaré
operator) for varying coefficient contrast and inter-inclusion distance [1, 10].

For simplicity we always assume that the inclusions are convex, and that any two that
asymptotically meet only meet at one point. Since the regularity of u and the corresponding
estimates only depend on the geometry of the inclusions locally, we shall restrict ourselves
to the case of two inclusions, D1 and D2, of size O(1), that asymptotically meet (with a
horizontal tangent) at the point 0, see Figure 1. We denote Γi := ∂Di, i = 1, 2. For
simplicity, we assume that the matrix phase has conductivity 1 and that both inclusions have
conductivity k 6= 1. For δ > 0, we consider the situation where the inclusions are at a distance
δ apart, say in the unit vertical direction e2. As we shall see, the corresponding system of
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