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PROOF OF THE EXACT OVERLAPS CONJECTURE
FOR SYSTEMS WITH ALGEBRAIC CONTRACTIONS

by Ariel RAPAPORT

Abstract. – We establish the exact overlaps conjecture for iterated functions systems on the real
line with algebraic contractions and arbitrary translations.

Résumé. – Nous prouvons la conjecture de chevauchements exacts pour des systèmes de fonctions
itérées définies sur l’ensemble des nombres réels à contractions algébriques et translations arbitraires.

1. Introduction

1.1. Background

Letm � 1 and ˆ D f'j .x/ D �jxC tj gmjD0 be a finite set of contracting similarities of R,
so that 0 ¤ �j 2 .�1; 1/ and tj 2 R for each 0 � j � m. Such a collection ˆ is called a self-
similar iterated function system (IFS). It is well known that there exists a unique nonempty
compact K � R, called the attractor of ˆ, which satisfies the relation

(1.1) K D

m[
jD0

'j .K/:

The set K is said to be self-similar.
Suppose additionally that p D .pj /mjD0 is a probability vector. Then there exists a unique

Borel probability measure � D �.ˆ; p/ on R such that

� D

mX
jD0

pj � 'j�;

where 'j� is the push-forward of � by 'j . The measure � is supported onK, it is the unique
stationary probability measure for the random walk moving from x 2 R to 'j .x/ with
probability pj , and it is called the self-similar measure corresponding to ˆ and p. We shall
always assume that p has strictly positive coordinates, in which case the support of� is equal
to K.
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1358 A. RAPAPORT

The dimension theory of self-similar measures is a central area of research in fractal
geometry. It was proven by Feng and Hu [8] that� is always exact dimensional. That is, there
exists a value dim� 2 Œ0; 1�, called the dimension of �, such that

dim� D lim
ı#0

log�.x � ı; x C ı/
log ı

for �-a.e. x 2 R:

As proven in [6], dim� agrees with the value given to � by other commonly used notions of
dimension, such as the Hausdorff, packing and entropy dimensions.

It turns out that in most cases dim� satisfies a certain formula in terms of p and the
contractions vector � D .�j /mjD0. Denote by H.p/ the entropy of p and by � the Lyapunov
exponent corresponding to p and �. That is,

(1.2) H.p/ D �

mX
jD0

pj logpj and � D �
mX
jD0

pj log j�j j;

where here and everywhere else in this paper the base of the log function is 2. Set,

(1.3) ˇ D ˇ.ˆ; p/ D minf1;H.p/=�g;

then it is not hard to show that ˇ is always an upper bound for dim� and that it is equal
to dim�whenever the union in (1.1) is disjoint. Moreover, it was proven by Jordan, Pollicott
and Simon [11] that if � is kept fixed and j�j j 2 .0; 12 / for each 0 � j � m, then dim� D ˇ

for Lebesgue almost every selection of the translations .tj /mjD0 2 RmC1. A version of this
result for sets was first established by Falconer [4].

There are cases in which it is obvious that dimension drop occurs, i.e., that dim� is strictly
less than ˇ. Denote the index set f0; : : : ; mg by ƒ. For n � 1 and a word j1 � � � jn D w 2 ƒn

set,

(1.4) 'w D 'j1
ı � � � ı 'jn

and �w D �j1
� � ��jn

:

The IFS ˆ is said to have exact overlaps if the semigroup generated by its elements is not
free. Since the members of ˆ are contractions, this is equivalent to the existence of n � 1

and distinct words w1; w2 2 ƒn with 'w1
D 'w2

. It is not difficult to see that dim� < ˇ

whenever ˆ has exact overlaps and dim� < 1. The following folklore conjecture says that
these are the only circumstances in which dimension drop can occur. A version of it for sets
was stated, probably for the first time, by Simon [16].

Conjecture 1. – Suppose that dim� < ˇ then ˆ has exact overlaps.

A major step towards the verification of Conjecture 1 was achieved by Hochman [9].
For n � 1 set,

(1.5) �n D min
˚ˇ̌
'w1

.0/ � 'w2
.0/
ˇ̌
W w1; w2 2 ƒ

n; w1 ¤ w2 and �w1
D �w2

	
:

It always holds that �n
n
! 0 at a rate which is at least exponential, and that �n D 0 for

some n � 1 if and only if ˆ has exact overlaps. The main result in [9] says that if dim� < ˇ

then �n
n
! 0 super-exponentially, that is

lim
n

1

n
log�n D �1:

A version of this for Lq dimensions was recently obtained by Shmerkin [15, Theorem 6.6].
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Two applications of Hochman’s result are especially relevant to the present paper. It is
not hard to see that if �0; : : : ; �m; t0; : : : ; tm are all algebraic numbers and �n

n
! 0 super-

exponentially, then in factˆmust have exact overlaps. Relaying on this observation, Conjec-
ture 1 is established in [9, Theorem 1.5] for the case of algebraic parameters. The second
application verifies a conjecture of Furstenberg regarding projections of the one-dimensional
Sierpinski gasket (see e.g., [13, Question 2.5]). Stated with the notation introduced above, it
is proven in [9, Theorem 1.6] that Conjecture 1 is valid when m D 2 and

� D p D

�
1

3
;
1

3
;
1

3

�
:

Another important step towards Conjecture 1 was recently achieved by Varjú [17]. He has
shown that if � is a Bernoulli convolution, that is if in the notation above

m D 1; �0 D �1 > 0; t0 D �1 and t1 D 1;

then dim� D ˇ whenever �0 is transcendental. Together with the result mentioned above
regarding systems with algebraic parameters, this verifies Conjecture 1 for the family of
Bernoulli convolutions.

Given Hochman’s and Shmerkin’s results, it is natural to ask whetherˆ has exact overlaps
whenever �n

n
! 0 super-exponentially. Recently, examples have been constructed by Baker

[1] and independently by Bárány and Käenmäki [2], which show that this is not necessarily
true. In Baker’s construction the maps in the IFS all contract by a rational number, and so
it is especially relevant to the present paper. In a joint work with P. Varjú [14] we will treat a
family of self-similar measures which is closer to the example from [2].

1.2. Results

The following theorem is our main result. It verifies Conjecture 1 for the case of algebraic
contractions and arbitrary translations.

Theorem 2. – Let m � 0 and ˆ D f'j .x/ D �jx C tj g
m
jD0 be a self-similar IFS

on R. Suppose that �0; : : : ; �m are all algebraic numbers and thatˆ has no exact overlaps. Let
p D .pj /

m
jD0 be a probability vector and denote by � the self-similar measure corresponding

to ˆ and p. Then dim� D ˇ, where ˇ is as defined in (1.3).

A version for sets of the conjecture follows directly from the last theorem in the case of
algebraic contractions. Given an IFS ˆ as above denote by dims ˆ its similarity dimension,
that is dims ˆ is the unique s � 0 which satisfies the equation

mX
jD0

j�j j
s
D 1:

It is not hard to see that minf1; dims ˆg is always an upper bound for dimH K, where K is
the attractor of ˆ and dimH stands for Hausdorff dimension. Moreover, the equality

(1.6) dimH K D minf1; dims ˆg

is satisfied when the union in (1.1) is disjoint or, more generally, if ˆ satisfies the so-called
open set condition (see for instance [3, Chapter 2.1]). The version for sets of Conjecture 1
says that (1.6) holds whenever ˆ has no exact overlaps.
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